# Llama4 Usage [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md) is Meta's latest generation of open-source LLM model with industry-leading performance. SGLang has supported Llama 4 Scout (109B) and Llama 4 Maverick (400B) since [v0.4.5](https://github.com/sgl-project/sglang/releases/tag/v0.4.5). Ongoing optimizations are tracked in the [Roadmap](https://github.com/sgl-project/sglang/issues/5118). ## Launch Llama 4 with SGLang To serve Llama 4 models on 8xH100/H200 GPUs: ```bash python3 -m sglang.launch_server --model-path meta-llama/Llama-4-Scout-17B-16E-Instruct --tp 8 --context-length 1000000 ``` ### Configuration Tips - **OOM Mitigation**: Adjust `--context-length` to avoid a GPU out-of-memory issue. For the Scout model, we recommend setting this value up to 1M on 8\*H100 and up to 2.5M on 8\*H200. For the Maverick model, we don't need to set context length on 8\*H200. When hybrid kv cache is enabled, `--context-length` can be set up to 5M on 8\*H100 and up to 10M on 8\*H200 for the Scout model. - **Chat Template**: Add `--chat-template llama-4` for chat completion tasks. - **Enable Multi-Modal**: Add `--enable-multimodal` for multi-modal capabilities. - **Enable Hybrid-KVCache**: Add `--hybrid-kvcache-ratio` for hybrid kv cache. Details can be seen in [this PR](https://github.com/sgl-project/sglang/pull/6563) ### EAGLE Speculative Decoding **Description**: SGLang has supported Llama 4 Maverick (400B) with [EAGLE speculative decoding](https://docs.sglang.ai/backend/speculative_decoding.html#EAGLE-Decoding). **Usage**: Add arguments `--speculative-draft-model-path`, `--speculative-algorithm`, `--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` to enable this feature. For example: ``` python3 -m sglang.launch_server --model-path meta-llama/Llama-4-Maverick-17B-128E-Instruct --speculative-algorithm EAGLE3 --speculative-draft-model-path nvidia/Llama-4-Maverick-17B-128E-Eagle3 --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4 --trust-remote-code --tp 8 --context-length 1000000 ``` - **Note** The Llama 4 draft model *nvidia/Llama-4-Maverick-17B-128E-Eagle3* can only recognize conversations in chat mode. ## Benchmarking Results ### Accuracy Test with `lm_eval` The accuracy on SGLang for both Llama4 Scout and Llama4 Maverick can match the [official benchmark numbers](https://ai.meta.com/blog/llama-4-multimodal-intelligence/). Benchmark results on MMLU Pro dataset with 8*H100: | | Llama-4-Scout-17B-16E-Instruct | Llama-4-Maverick-17B-128E-Instruct | |--------------------|--------------------------------|-------------------------------------| | Official Benchmark | 74.3 | 80.5 | | SGLang | 75.2 | 80.7 | Commands: ```bash # Llama-4-Scout-17B-16E-Instruct model python -m sglang.launch_server --model-path meta-llama/Llama-4-Scout-17B-16E-Instruct --port 30000 --tp 8 --mem-fraction-static 0.8 --context-length 65536 lm_eval --model local-chat-completions --model_args model=meta-llama/Llama-4-Scout-17B-16E-Instruct,base_url=http://localhost:30000/v1/chat/completions,num_concurrent=128,timeout=999999,max_gen_toks=2048 --tasks mmlu_pro --batch_size 128 --apply_chat_template --num_fewshot 0 # Llama-4-Maverick-17B-128E-Instruct python -m sglang.launch_server --model-path meta-llama/Llama-4-Maverick-17B-128E-Instruct --port 30000 --tp 8 --mem-fraction-static 0.8 --context-length 65536 lm_eval --model local-chat-completions --model_args model=meta-llama/Llama-4-Maverick-17B-128E-Instruct,base_url=http://localhost:30000/v1/chat/completions,num_concurrent=128,timeout=999999,max_gen_toks=2048 --tasks mmlu_pro --batch_size 128 --apply_chat_template --num_fewshot 0 ``` Details can be seen in [this PR](https://github.com/sgl-project/sglang/pull/5092).