#include #include #include "shm.h" // Communication settings static int world_rank = -1; static int world_size = -1; static bool is_initialized = false; static bool all_ranks_local_p = false; void initialize(int64_t size, int64_t rank) { if (is_initialized) { return; } // Check whether all ranks is on the same physical machine. // If true, we will use an SHM based low latency allreduce auto ls_string = std::getenv("LOCAL_SIZE"); int ls = 0; if (ls_string != NULL) { ls = std::stoi(std::getenv("LOCAL_SIZE")); } if (size >= 1 && size == ls) { all_ranks_local_p = true; } world_size = size; world_rank = rank; is_initialized = true; const char* addr_string = std::getenv("MASTER_ADDR"); if (addr_string == NULL) { addr_string = ""; } const char* port_string = std::getenv("MASTER_PORT"); if (port_string == NULL) { port_string = ""; } if (all_ranks_local_p) { shm_initialize(size, rank, addr_string, port_string); } } void shm_allreduce(torch::Tensor& data, int64_t op) { RECORD_FUNCTION("sgl-kernel::shm_allreduce", std::vector({data})); TORCH_CHECK(op == c10d::ReduceOp::SUM, "Only torch.distributed.ReduceOp.SUM is supported"); auto numel = data.numel(); int data_size = numel * data.element_size(); all_reduce_outer_loop(data, numel, data_size); return; } torch::Tensor shm_allgather(torch::Tensor& data, int64_t dim) { RECORD_FUNCTION("sgl-kernel::shm_allgather", std::vector({data})); auto numel = data.numel(); int data_size = numel * data.element_size(); if (dim < 0) { dim += data.dim(); } std::vector result_shape = data.sizes().vec(); result_shape[dim] *= world_size; torch::Tensor result_tensor = torch::empty(result_shape, data.options()); return all_gather(result_tensor, data, dim, numel, data_size); }