from typing import Any, Dict, Optional import torch def moe_align_block_size( topk_ids, num_experts, block_size, sorted_token_ids, experts_ids, num_tokens_post_pad, cumsum_buffer, pad_sorted_token_ids=False, ): torch.ops.sgl_kernel.moe_align_block_size.default( topk_ids, num_experts, block_size, sorted_token_ids, experts_ids, num_tokens_post_pad, cumsum_buffer, pad_sorted_token_ids, ) def topk_softmax( topk_weights: torch.Tensor, topk_ids: torch.Tensor, gating_output: float, renormalize: bool = False, ) -> None: torch.ops.sgl_kernel.topk_softmax.default( topk_weights, topk_ids, gating_output, renormalize ) def moe_fused_gate( input_tensor, bias, num_expert_group, topk_group, topk, num_fused_shared_experts=0, routed_scaling_factor=0, apply_routed_scaling_factor_on_output=False, ): # This fused kernel function is used to select topk expert in a hierarchical 2-layer fashion # it split group of expert into num_expert_group, and use top2 expert weight sum in each group # as the group weight to select expert groups and then select topk experts within the selected groups # the #experts is decided by the input tensor shape and we currently only support power of 2 #experts # and #experts should be divisible by num_expert_group. #expert/num_expert_group <= 32 is limited for now. # for non-supported case, we suggest to use the biased_grouped_topk func in sglang.srt.layers.moe.topk # num_fused_shared_experts: if > 0, the last several experts will be # replaced with shared experts. the shared experts will be divided by the # routed_scaling_factor - this is intended to cancel out later when routed+shared # output is scaled so that shared experts are not scaled. # routed_scaling_factor: if > 0, the experts will be scaled by this factor # apply_routed_scaling_factor_on_output: if true, output will be # scaled by the routed_scaling_factor return torch.ops.sgl_kernel.moe_fused_gate.default( input_tensor, bias, num_expert_group, topk_group, topk, num_fused_shared_experts, routed_scaling_factor, apply_routed_scaling_factor_on_output, ) def fp8_blockwise_scaled_grouped_mm( output, a_ptrs, b_ptrs, out_ptrs, a_scales_ptrs, b_scales_ptrs, a, b, scales_a, scales_b, stride_a, stride_b, stride_c, layout_sfa, layout_sfb, problem_sizes, expert_offsets, workspace, ): torch.ops.sgl_kernel.fp8_blockwise_scaled_grouped_mm.default( output, a_ptrs, b_ptrs, out_ptrs, a_scales_ptrs, b_scales_ptrs, a, b, scales_a, scales_b, stride_a, stride_b, stride_c, layout_sfa, layout_sfb, problem_sizes, expert_offsets, workspace, ) def prepare_moe_input( topk_ids, expert_offsets, problem_sizes1, problem_sizes2, input_permutation, output_permutation, num_experts, n, k, blockscale_offsets: Optional[torch.Tensor] = None, ): torch.ops.sgl_kernel.prepare_moe_input.default( topk_ids, expert_offsets, blockscale_offsets, problem_sizes1, problem_sizes2, input_permutation, output_permutation, num_experts, n, k, ) def apply_shuffle_mul_sum( input, output, permutation, factors, ): torch.ops.sgl_kernel.apply_shuffle_mul_sum.default( input, output, permutation, factors ) def cutlass_fp4_group_mm( a_fp4, b_fp4, a_blockscale, b_blockscale, alphas, out_dtype, device, params: Dict[str, Any], ): """ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs the gemms for each combination based on the specified problem sizes. This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward. - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized input and expert weights. - a_/b_scales: The blockscales in FP8-E4M3 precision - ab_strides/c_strides: Strides for the a/b tensors between rows. - expert_offsets/sf_offsets: Indices that mark at which token index each expert begins its computation. The number of tokens computed with expert E is expert_offsets[E + 1] - expert_offsets[E] And the sf_size per expert is sf_offset[E+1] - sf_offset[E] - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped MMs used in the fused MoE operation. """ m_topk = a_fp4.shape[0] n = b_fp4.shape[1] c_shape = (m_topk, n) c = torch.empty(c_shape, device=device, dtype=out_dtype) torch.ops.sgl_kernel.cutlass_fp4_group_mm.default( c, a_fp4, b_fp4, a_blockscale, b_blockscale, alphas, params["ab_strides"], params["c_strides"], params["problem_sizes"], params["expert_offsets"], params["blockscale_offsets"], ) return c.to(dtype=out_dtype)