"""For Now, MSCCL is only supported on TP16 and TP8 case if [[ $RANK -eq 0 ]]; then ray start --block --head --port=6379 & python3 test_mscclpp.py; else ray start --block --address=${MASTER_ADDR}:6379; fi """ import itertools import os import random import socket import unittest from contextlib import contextmanager, nullcontext from typing import Any, List, Optional, Union import ray import torch import torch.distributed as dist from torch.distributed import ProcessGroup, ReduceOp from sglang.srt.distributed import init_distributed_environment from sglang.srt.distributed.communication_op import ( # noqa tensor_model_parallel_all_reduce, ) from sglang.srt.distributed.device_communicators.custom_all_reduce import ( CustomAllreduce, ) from sglang.srt.distributed.device_communicators.pymscclpp import PyMscclppCommunicator from sglang.srt.distributed.device_communicators.pynccl import PyNcclCommunicator from sglang.srt.distributed.parallel_state import ( get_tensor_model_parallel_group, graph_capture, initialize_model_parallel, set_custom_all_reduce, set_mscclpp_all_reduce, ) from sglang.srt.distributed.utils import StatelessProcessGroup from sglang.test.test_utils import CustomTestCase def get_open_port() -> int: # try ipv4 try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("", 0)) return s.getsockname()[1] except OSError: # try ipv6 with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s: s.bind(("", 0)) return s.getsockname()[1] def multi_process_parallel( world_size: int, master_addr: str, cls: Any, test_target: Any, ) -> None: # Using ray helps debugging the error when it failed # as compared to multiprocessing. # NOTE: We need to set working_dir for distributed tests, # otherwise we may get import errors on ray workers ray.init(log_to_driver=True) distributed_init_port = get_open_port() refs = [] for rank in range(world_size): refs.append( test_target.remote( cls, world_size, master_addr, rank, distributed_init_port ) ) ray.get(refs) ray.shutdown() class TestMSCCLAllReduce(CustomTestCase): @classmethod def setUpClass(cls): random.seed(42) # 1KB to 1MB cls.test_sizes = [512, 4096, 32768, 262144, 524288] cls.world_sizes = [8] TEST_TP16 = int(os.getenv("SGL_MSCCLPP_TEST_TP16", "0")) if TEST_TP16: cls.world_sizes = [16] cls.test_loop = 10 def test_graph_allreduce(self): TEST_MASTER_ADDR = os.getenv("SGL_MSCCLPP_TEST_MASTER_ADDR", "localhost") for world_size in self.world_sizes: if world_size not in [8, 16]: continue multi_process_parallel( world_size, TEST_MASTER_ADDR, self, self.graph_allreduce ) def test_eager_allreduce(self): TEST_MASTER_ADDR = os.getenv("SGL_MSCCLPP_TEST_MASTER_ADDR", "localhost") for world_size in self.world_sizes: if world_size not in [8, 16]: continue multi_process_parallel( world_size, TEST_MASTER_ADDR, self, self.eager_allreduce ) @ray.remote(num_gpus=1, max_calls=1) def graph_allreduce(self, world_size, master_addr, rank, distributed_init_port): del os.environ["CUDA_VISIBLE_DEVICES"] device = torch.device(f"cuda:{rank % torch.cuda.device_count()}") torch.cuda.set_device(device) distributed_init_method = f"tcp://{master_addr}:{distributed_init_port}" set_mscclpp_all_reduce(True) set_custom_all_reduce(False) init_distributed_environment( world_size=world_size, rank=rank, distributed_init_method=distributed_init_method, local_rank=rank % torch.cuda.device_count(), ) initialize_model_parallel(tensor_model_parallel_size=world_size) group = get_tensor_model_parallel_group().device_group # A small all_reduce for warmup. # this is needed because device communicators might be created lazily # (e.g. NCCL). This will ensure that the communicator is initialized # before any communication happens, so that this group can be used for # graph capture immediately. data = torch.zeros(1) data = data.to(device=device) torch.distributed.all_reduce(data, group=group) torch.cuda.synchronize() del data for sz in self.test_sizes: for dtype in [torch.float32, torch.float16, torch.bfloat16]: for _ in range(self.test_loop): with graph_capture() as graph_capture_context: # use integers so result matches NCCL exactly inp1 = torch.randint( 1, 16, (sz,), dtype=dtype, device=torch.cuda.current_device(), ) inp2 = torch.randint( 1, 16, (sz,), dtype=dtype, device=torch.cuda.current_device(), ) torch.cuda.synchronize() graph = torch.cuda.CUDAGraph() with torch.cuda.graph( graph, stream=graph_capture_context.stream ): out1 = tensor_model_parallel_all_reduce(inp1) # the input buffer is immediately modified to test # synchronization dist.all_reduce(inp1, group=group) out2 = tensor_model_parallel_all_reduce(inp2) dist.all_reduce(inp2, group=group) graph.replay() torch.testing.assert_close(out1, inp1) torch.testing.assert_close(out2, inp2) @ray.remote(num_gpus=1, max_calls=1) def eager_allreduce(self, world_size, master_addr, rank, distributed_init_port): del os.environ["CUDA_VISIBLE_DEVICES"] device = torch.device(f"cuda:{rank % torch.cuda.device_count()}") torch.cuda.set_device(device) distributed_init_method = f"tcp://{master_addr}:{distributed_init_port}" set_mscclpp_all_reduce(True) set_custom_all_reduce(False) init_distributed_environment( world_size=world_size, rank=rank, distributed_init_method=distributed_init_method, local_rank=rank, ) initialize_model_parallel(tensor_model_parallel_size=world_size) group = get_tensor_model_parallel_group().device_group for sz in self.test_sizes: for dtype in [torch.float32, torch.float16, torch.bfloat16]: for _ in range(self.test_loop): inp1 = torch.randint( 1, 16, (sz,), dtype=dtype, device=torch.cuda.current_device() ) out1 = tensor_model_parallel_all_reduce(inp1) dist.all_reduce(inp1, group=group) torch.testing.assert_close(out1, inp1) if __name__ == "__main__": unittest.main()