import random import unittest import torch from sglang.srt.layers.attention.triton_ops.decode_attention import ( decode_attention_fwd_grouped as triton_decode_attention_fwd_grouped, ) from sglang.srt.layers.attention.triton_ops.extend_attention import ( extend_attention_fwd, redundant_attention, ) from sglang.srt.layers.attention.triton_ops.prefill_attention import ( context_attention_fwd, ) from sglang.srt.layers.attention.wave_ops.decode_attention import ( decode_attention_intermediate_arrays_shapes, decode_attention_wave, ) from sglang.srt.layers.attention.wave_ops.extend_attention import extend_attention_wave from sglang.srt.layers.attention.wave_ops.prefill_attention import ( prefill_attention_wave, ) class TestWaveAttention(unittest.TestCase): def _set_all_seeds(self, seed): """Set all random seeds for reproducibility.""" random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def setUp(self): # Set seeds before each test method self._set_all_seeds(42) def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D): dtype = torch.float16 extend_seq_len = 1024 b_seq_len_prefix = torch.full( (B,), N_CTX // B, dtype=torch.int32, device="cuda" ) b_seq_len_extend = torch.full( (B,), extend_seq_len, dtype=torch.int32, device="cuda" ) b_seq_len = b_seq_len_prefix + b_seq_len_extend max_len_in_batch = torch.max(b_seq_len, 0)[0].item() b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda") b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda") b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0) b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda") b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0) kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda") kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0) kv_indices = torch.zeros( (b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda" ) for i in range(B): kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange( b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i] ) total_token_num = torch.sum(b_seq_len).item() extend_token_num = torch.sum(b_seq_len_extend).item() k_buffer = torch.empty( (total_token_num, H_KV, D), dtype=dtype, device="cuda" ).normal_(mean=0.1, std=0.2) v_buffer = torch.empty( (total_token_num, H_KV, D), dtype=dtype, device="cuda" ).normal_(mean=0.1, std=0.2) k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda") v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda") q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda") for i in range(B): extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i] extend_end_in_buffer = b_start_loc[i] + b_seq_len[i] extend_start = b_start_loc_extend[i] extend_end = b_start_loc_extend[i] + b_seq_len_extend[i] k_extend[extend_start:extend_end] = k_buffer[ extend_start_in_buffer:extend_end_in_buffer ] v_extend[extend_start:extend_end] = v_buffer[ extend_start_in_buffer:extend_end_in_buffer ] q_extend[extend_start:extend_end] = torch.empty( (b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda" ).normal_(mean=0.1, std=0.2) o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda") o_extend_mask = torch.empty( (extend_token_num, H_Q, D), dtype=dtype, device="cuda" ) o_redundant = torch.empty( (extend_token_num, H_Q, D), dtype=dtype, device="cuda" ) b_seq_len_extend = b_seq_len - b_seq_len_prefix max_len_extend = torch.max(b_seq_len_extend, 0)[0].item() qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda") qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0) custom_mask = None mask_indptr = None redundant_attention( q_extend, o_redundant, k_buffer, v_buffer, b_req_idx, b_start_loc, b_seq_len, b_seq_len_prefix, max_len_in_batch, ) is_causal = True o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda") extend_attention_fwd( q_extend, k_extend, v_extend, o_extend, k_buffer, v_buffer, qo_indptr, kv_indptr, kv_indices, custom_mask, is_causal, mask_indptr, max_len_extend, ) o_wave = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda") extend_attention_wave( q_extend, k_extend, v_extend, k_buffer, v_buffer, qo_indptr, kv_indptr, kv_indices, custom_mask, mask_indptr, max_len_extend, o_wave, is_causal=is_causal, ) self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2)) self.assertTrue(torch.allclose(o_wave, o_redundant, rtol=1e-2)) def test_extend_attention(self): # Define the varying parameter values attention_values = [128] # Loop through the values and call the method for value in attention_values: self._test_extend_attention_once(32, 16384, 6, 1, value) def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V): dtype = torch.float16 seq_len = S # This represents the number of tokens already in the sequence total_tokens = B * seq_len sm_scale = 1.0 / (D**0.5) max_kv_splits = 8 num_kv_splits = torch.full((B,), 4, dtype=torch.int32, device="cuda") # q represents the new token being generated, one per batch q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda") # k_buffer and v_buffer represent all previous tokens k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda") v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda") # o will have the same shape as q o_triton = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda") o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda") req_to_token = torch.arange(total_tokens, device="cuda", dtype=torch.int32) b_req_idx = torch.zeros(B + 1, device="cuda", dtype=torch.int32) b_seq_len = torch.full((B,), seq_len, device="cuda", dtype=torch.int32) b_req_idx[1 : B + 1] = torch.cumsum(b_seq_len, dim=0) attn_logits = torch.empty( (B, H_Q, max_kv_splits, D_V + 1), dtype=torch.float32, device="cuda", ) attn_lse = torch.empty( (B, H_Q, max_kv_splits), dtype=torch.float32, device="cuda", ) logit_cap = 0.0 triton_decode_attention_fwd_grouped( q, k_buffer, v_buffer, o_triton, b_req_idx, req_to_token, attn_logits, attn_lse, num_kv_splits, max_kv_splits, sm_scale, logit_cap, ) attn_logits_shape, attn_logits_max_shape = ( decode_attention_intermediate_arrays_shapes(B, D_V, H_Q, max_kv_splits) ) attn_logits = torch.empty( attn_logits_shape, dtype=torch.float32, device="cuda", ) attn_logits_max = torch.empty( attn_logits_max_shape, dtype=torch.float32, device="cuda", ) decode_attention_wave( q, k_buffer, v_buffer, o, b_req_idx, req_to_token, attn_logits, attn_logits_max, num_kv_splits, max_kv_splits, sm_scale, logit_cap, ) cos_sim = torch.nn.functional.cosine_similarity( o.flatten(), o_triton.flatten(), dim=0 ) print(cos_sim.item()) self.assertTrue(cos_sim.item() > 0.99) self.assertTrue(torch.allclose(o, o_triton, atol=3e-2)) def test_grouped_decode_attention(self): seq_lens = [5, 100, 128, 500] configs = [ (2, 16, 16, 64, 64), (2, 16, 1, 64, 64), (2, 128, 1, 80, 80), (32, 128, 2, 512, 512), (2, 128, 2, 512, 512), (2, 128, 1, 576, 512), ] for S in seq_lens: for B, H_Q, H_KV, D, D_V in configs: self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V) def _test_context_attention_once(self, head_dim, is_causal): # Set up a simple test case dtype = torch.float16 num_heads = 4 kv_heads = 1 seq_lens = [128, 256] max_seq_len = max(seq_lens) # Create random input tensors q = torch.randn(sum(seq_lens), num_heads, head_dim, dtype=dtype, device="cuda") k = torch.randn(sum(seq_lens), kv_heads, head_dim, dtype=dtype, device="cuda") v = torch.randn(sum(seq_lens), kv_heads, head_dim, dtype=dtype, device="cuda") o_triton = torch.zeros( sum(seq_lens), num_heads, head_dim, dtype=dtype, device="cuda" ) o = torch.zeros(sum(seq_lens), num_heads, head_dim, dtype=dtype, device="cuda") # Create b_start_loc and b_seq_len tensors b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda") b_seq_len = torch.tensor(seq_lens, device="cuda") context_attention_fwd( q, k, v, o_triton, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal ) prefill_attention_wave( q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal ) cos_sim = torch.nn.functional.cosine_similarity( o.flatten(), o_triton.flatten(), dim=0 ) print(cos_sim.item()) self.assertTrue(torch.allclose(o, o_triton, atol=3e-2)) self.assertTrue(cos_sim.item() > 1 - (1e-5)) def test_context_attention(self): head_dim = [128, 96] for dim in head_dim: for is_causal in [False]: self._test_context_attention_once(dim, is_causal) if __name__ == "__main__": unittest.main()