import pytest import torch from common_utils import assert_equal, get_list_of_videos from torchvision import io from torchvision.datasets.samplers import DistributedSampler, RandomClipSampler, UniformClipSampler from torchvision.datasets.video_utils import VideoClips @pytest.mark.skipif(not io.video._av_available(), reason="this test requires av") class TestDatasetsSamplers: def test_random_clip_sampler(self, tmpdir): video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) video_clips = VideoClips(video_list, 5, 5) sampler = RandomClipSampler(video_clips, 3) assert len(sampler) == 3 * 3 indices = torch.tensor(list(iter(sampler))) videos = torch.div(indices, 5, rounding_mode="floor") v_idxs, count = torch.unique(videos, return_counts=True) assert_equal(v_idxs, torch.tensor([0, 1, 2])) assert_equal(count, torch.tensor([3, 3, 3])) def test_random_clip_sampler_unequal(self, tmpdir): video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25]) video_clips = VideoClips(video_list, 5, 5) sampler = RandomClipSampler(video_clips, 3) assert len(sampler) == 2 + 3 + 3 indices = list(iter(sampler)) assert 0 in indices assert 1 in indices # remove elements of the first video, to simplify testing indices.remove(0) indices.remove(1) indices = torch.tensor(indices) - 2 videos = torch.div(indices, 5, rounding_mode="floor") v_idxs, count = torch.unique(videos, return_counts=True) assert_equal(v_idxs, torch.tensor([0, 1])) assert_equal(count, torch.tensor([3, 3])) def test_uniform_clip_sampler(self, tmpdir): video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) video_clips = VideoClips(video_list, 5, 5) sampler = UniformClipSampler(video_clips, 3) assert len(sampler) == 3 * 3 indices = torch.tensor(list(iter(sampler))) videos = torch.div(indices, 5, rounding_mode="floor") v_idxs, count = torch.unique(videos, return_counts=True) assert_equal(v_idxs, torch.tensor([0, 1, 2])) assert_equal(count, torch.tensor([3, 3, 3])) assert_equal(indices, torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])) def test_uniform_clip_sampler_insufficient_clips(self, tmpdir): video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25]) video_clips = VideoClips(video_list, 5, 5) sampler = UniformClipSampler(video_clips, 3) assert len(sampler) == 3 * 3 indices = torch.tensor(list(iter(sampler))) assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])) def test_distributed_sampler_and_uniform_clip_sampler(self, tmpdir): video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) video_clips = VideoClips(video_list, 5, 5) clip_sampler = UniformClipSampler(video_clips, 3) distributed_sampler_rank0 = DistributedSampler( clip_sampler, num_replicas=2, rank=0, group_size=3, ) indices = torch.tensor(list(iter(distributed_sampler_rank0))) assert len(distributed_sampler_rank0) == 6 assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14])) distributed_sampler_rank1 = DistributedSampler( clip_sampler, num_replicas=2, rank=1, group_size=3, ) indices = torch.tensor(list(iter(distributed_sampler_rank1))) assert len(distributed_sampler_rank1) == 6 assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4])) if __name__ == "__main__": pytest.main([__file__])