import concurrent.futures import contextlib import glob import io import os import re import sys from pathlib import Path import numpy as np import pytest import requests import torch import torchvision.transforms.v2.functional as F from common_utils import assert_equal, cpu_and_cuda, IN_OSS_CI, needs_cuda from PIL import __version__ as PILLOW_VERSION, Image, ImageOps, ImageSequence from torchvision.io.image import ( decode_avif, decode_gif, decode_heic, decode_image, decode_jpeg, decode_png, decode_webp, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets") FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata") IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder") DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg") DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png") ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg") INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png") TOOSMALL_PNG = os.path.join(IMAGE_ROOT, "toosmall_png") IS_WINDOWS = sys.platform in ("win32", "cygwin") IS_MACOS = sys.platform == "darwin" IS_LINUX = sys.platform == "linux" PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split(".")) WEBP_TEST_IMAGES_DIR = os.environ.get("WEBP_TEST_IMAGES_DIR", "") # See https://github.com/pytorch/vision/pull/8724#issuecomment-2503964558 HEIC_AVIF_MESSAGE = "AVIF and HEIF only available on linux." def _get_safe_image_name(name): # Used when we need to change the pytest "id" for an "image path" parameter. # If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific, # and this creates issues when the test is running in a different machine than where it was collected # (typically, in fb internal infra) return name.split(os.path.sep)[-1] def get_images(directory, img_ext): assert os.path.isdir(directory) image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True) for path in image_paths: if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]: yield path def pil_read_image(img_path): with Image.open(img_path) as img: return torch.from_numpy(np.array(img)) def normalize_dimensions(img_pil): if len(img_pil.shape) == 3: img_pil = img_pil.permute(2, 0, 1) else: img_pil = img_pil.unsqueeze(0) return img_pil @pytest.mark.parametrize( "img_path", [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")], ) @pytest.mark.parametrize( "pil_mode, mode", [ (None, ImageReadMode.UNCHANGED), ("L", ImageReadMode.GRAY), ("RGB", ImageReadMode.RGB), ], ) @pytest.mark.parametrize("scripted", (False, True)) @pytest.mark.parametrize("decode_fun", (decode_jpeg, decode_image)) def test_decode_jpeg(img_path, pil_mode, mode, scripted, decode_fun): with Image.open(img_path) as img: is_cmyk = img.mode == "CMYK" if pil_mode is not None: img = img.convert(pil_mode) img_pil = torch.from_numpy(np.array(img)) if is_cmyk and mode == ImageReadMode.UNCHANGED: # flip the colors to match libjpeg img_pil = 255 - img_pil img_pil = normalize_dimensions(img_pil) data = read_file(img_path) if scripted: decode_fun = torch.jit.script(decode_fun) img_ljpeg = decode_fun(data, mode=mode) # Permit a small variation on pixel values to account for implementation # differences between Pillow and LibJPEG. abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item() assert abs_mean_diff < 2 @pytest.mark.parametrize("codec", ["png", "jpeg"]) @pytest.mark.parametrize("orientation", [1, 2, 3, 4, 5, 6, 7, 8, 0]) def test_decode_with_exif_orientation(tmpdir, codec, orientation): fp = os.path.join(tmpdir, f"exif_oriented_{orientation}.{codec}") t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8) im = F.to_pil_image(t) exif = im.getexif() exif[0x0112] = orientation # set exif orientation im.save(fp, codec.upper(), exif=exif.tobytes()) data = read_file(fp) output = decode_image(data, apply_exif_orientation=True) pimg = Image.open(fp) pimg = ImageOps.exif_transpose(pimg) expected = F.pil_to_tensor(pimg) torch.testing.assert_close(expected, output) @pytest.mark.parametrize("size", [65533, 1, 7, 10, 23, 33]) def test_invalid_exif(tmpdir, size): # Inspired from a PIL test: # https://github.com/python-pillow/Pillow/blob/8f63748e50378424628155994efd7e0739a4d1d1/Tests/test_file_jpeg.py#L299 fp = os.path.join(tmpdir, "invalid_exif.jpg") t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8) im = F.to_pil_image(t) im.save(fp, "JPEG", exif=b"1" * size) data = read_file(fp) output = decode_image(data, apply_exif_orientation=True) pimg = Image.open(fp) pimg = ImageOps.exif_transpose(pimg) expected = F.pil_to_tensor(pimg) torch.testing.assert_close(expected, output) def test_decode_bad_huffman_images(): # sanity check: make sure we can decode the bad Huffman encoding bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg")) decode_jpeg(bad_huff) @pytest.mark.parametrize( "img_path", [ pytest.param(truncated_image, id=_get_safe_image_name(truncated_image)) for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg")) ], ) def test_damaged_corrupt_images(img_path): # Truncated images should raise an exception data = read_file(img_path) if "corrupt34" in img_path: match_message = "Image is incomplete or truncated" else: match_message = "Unsupported marker type" with pytest.raises(RuntimeError, match=match_message): decode_jpeg(data) @pytest.mark.parametrize( "img_path", [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")], ) @pytest.mark.parametrize( "pil_mode, mode", [ (None, ImageReadMode.UNCHANGED), ("L", ImageReadMode.GRAY), ("LA", ImageReadMode.GRAY_ALPHA), ("RGB", ImageReadMode.RGB), ("RGBA", ImageReadMode.RGB_ALPHA), ], ) @pytest.mark.parametrize("scripted", (False, True)) @pytest.mark.parametrize("decode_fun", (decode_png, decode_image)) def test_decode_png(img_path, pil_mode, mode, scripted, decode_fun): if scripted: decode_fun = torch.jit.script(decode_fun) with Image.open(img_path) as img: if pil_mode is not None: img = img.convert(pil_mode) img_pil = torch.from_numpy(np.array(img)) img_pil = normalize_dimensions(img_pil) if img_path.endswith("16.png"): data = read_file(img_path) img_lpng = decode_fun(data, mode=mode) assert img_lpng.dtype == torch.uint16 # PIL converts 16 bits pngs to uint8 img_lpng = F.to_dtype(img_lpng, torch.uint8, scale=True) else: data = read_file(img_path) img_lpng = decode_fun(data, mode=mode) tol = 0 if pil_mode is None else 1 if PILLOW_VERSION >= (8, 3) and pil_mode == "LA": # Avoid checking the transparency channel until # https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910 # is fixed. # TODO: remove once fix is released in PIL. Should be > 8.3.1. img_lpng, img_pil = img_lpng[0], img_pil[0] torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0) def test_decode_png_errors(): with pytest.raises(RuntimeError, match="Out of bound read in decode_png"): decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png"))) with pytest.raises(RuntimeError, match="Content is too small for png"): decode_png(read_file(os.path.join(TOOSMALL_PNG, "heapbof.png"))) @pytest.mark.parametrize( "img_path", [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")], ) @pytest.mark.parametrize("scripted", (True, False)) def test_encode_png(img_path, scripted): pil_image = Image.open(img_path) img_pil = torch.from_numpy(np.array(pil_image)) img_pil = img_pil.permute(2, 0, 1) encode = torch.jit.script(encode_png) if scripted else encode_png png_buf = encode(img_pil, compression_level=6) rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist()))) rec_img = torch.from_numpy(np.array(rec_img)) rec_img = rec_img.permute(2, 0, 1) assert_equal(img_pil, rec_img) def test_encode_png_errors(): with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"): encode_png(torch.empty((3, 100, 100), dtype=torch.float32)) with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"): encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1) with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"): encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10) with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"): encode_png(torch.empty((5, 100, 100), dtype=torch.uint8)) @pytest.mark.parametrize( "img_path", [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")], ) @pytest.mark.parametrize("scripted", (True, False)) def test_write_png(img_path, tmpdir, scripted): pil_image = Image.open(img_path) img_pil = torch.from_numpy(np.array(pil_image)) img_pil = img_pil.permute(2, 0, 1) filename, _ = os.path.splitext(os.path.basename(img_path)) torch_png = os.path.join(tmpdir, f"{filename}_torch.png") write = torch.jit.script(write_png) if scripted else write_png write(img_pil, torch_png, compression_level=6) saved_image = torch.from_numpy(np.array(Image.open(torch_png))) saved_image = saved_image.permute(2, 0, 1) assert_equal(img_pil, saved_image) def test_read_image(): # Just testing torchcsript, the functionality is somewhat tested already in other tests. path = next(get_images(IMAGE_ROOT, ".jpg")) out = read_image(path) out_scripted = torch.jit.script(read_image)(path) torch.testing.assert_close(out, out_scripted, atol=0, rtol=0) @pytest.mark.parametrize("scripted", (True, False)) def test_read_file(tmpdir, scripted): fname, content = "test1.bin", b"TorchVision\211\n" fpath = os.path.join(tmpdir, fname) with open(fpath, "wb") as f: f.write(content) fun = torch.jit.script(read_file) if scripted else read_file data = fun(fpath) expected = torch.tensor(list(content), dtype=torch.uint8) os.unlink(fpath) assert_equal(data, expected) with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"): read_file("tst") def test_read_file_non_ascii(tmpdir): fname, content = "日本語(Japanese).bin", b"TorchVision\211\n" fpath = os.path.join(tmpdir, fname) with open(fpath, "wb") as f: f.write(content) data = read_file(fpath) expected = torch.tensor(list(content), dtype=torch.uint8) os.unlink(fpath) assert_equal(data, expected) @pytest.mark.parametrize("scripted", (True, False)) def test_write_file(tmpdir, scripted): fname, content = "test1.bin", b"TorchVision\211\n" fpath = os.path.join(tmpdir, fname) content_tensor = torch.tensor(list(content), dtype=torch.uint8) write = torch.jit.script(write_file) if scripted else write_file write(fpath, content_tensor) with open(fpath, "rb") as f: saved_content = f.read() os.unlink(fpath) assert content == saved_content def test_write_file_non_ascii(tmpdir): fname, content = "日本語(Japanese).bin", b"TorchVision\211\n" fpath = os.path.join(tmpdir, fname) content_tensor = torch.tensor(list(content), dtype=torch.uint8) write_file(fpath, content_tensor) with open(fpath, "rb") as f: saved_content = f.read() os.unlink(fpath) assert content == saved_content @pytest.mark.parametrize( "shape", [ (27, 27), (60, 60), (105, 105), ], ) def test_read_1_bit_png(shape, tmpdir): np_rng = np.random.RandomState(0) image_path = os.path.join(tmpdir, f"test_{shape}.png") pixels = np_rng.rand(*shape) > 0.5 img = Image.fromarray(pixels) img.save(image_path) img1 = read_image(image_path) img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8)) assert_equal(img1, img2) @pytest.mark.parametrize( "shape", [ (27, 27), (60, 60), (105, 105), ], ) @pytest.mark.parametrize( "mode", [ ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ], ) def test_read_1_bit_png_consistency(shape, mode, tmpdir): np_rng = np.random.RandomState(0) image_path = os.path.join(tmpdir, f"test_{shape}.png") pixels = np_rng.rand(*shape) > 0.5 img = Image.fromarray(pixels) img.save(image_path) img1 = read_image(image_path, mode) img2 = read_image(image_path, mode) assert_equal(img1, img2) def test_read_interlaced_png(): imgs = list(get_images(INTERLACED_PNG, ".png")) with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2: assert im1.info.get("interlace") is not im2.info.get("interlace") img1 = read_image(imgs[0]) img2 = read_image(imgs[1]) assert_equal(img1, img2) @needs_cuda @pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB]) @pytest.mark.parametrize("scripted", (False, True)) def test_decode_jpegs_cuda(mode, scripted): encoded_images = [] for jpeg_path in get_images(IMAGE_ROOT, ".jpg"): if "cmyk" in jpeg_path: continue encoded_image = read_file(jpeg_path) encoded_images.append(encoded_image) decoded_images_cpu = decode_jpeg(encoded_images, mode=mode) decode_fn = torch.jit.script(decode_jpeg) if scripted else decode_jpeg # test multithreaded decoding # in the current version we prevent this by using a lock but we still want to test it num_workers = 10 with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(decode_fn, encoded_images, mode, "cuda") for _ in range(num_workers)] decoded_images_threaded = [future.result() for future in futures] assert len(decoded_images_threaded) == num_workers for decoded_images in decoded_images_threaded: assert len(decoded_images) == len(encoded_images) for decoded_image_cuda, decoded_image_cpu in zip(decoded_images, decoded_images_cpu): assert decoded_image_cuda.shape == decoded_image_cpu.shape assert decoded_image_cuda.dtype == decoded_image_cpu.dtype == torch.uint8 assert (decoded_image_cuda.cpu().float() - decoded_image_cpu.cpu().float()).abs().mean() < 2 @needs_cuda def test_decode_image_cuda_raises(): data = torch.randint(0, 127, size=(255,), device="cuda", dtype=torch.uint8) with pytest.raises(RuntimeError): decode_image(data) @needs_cuda def test_decode_jpeg_cuda_device_param(): path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path) data = read_file(path) current_device = torch.cuda.current_device() current_stream = torch.cuda.current_stream() num_devices = torch.cuda.device_count() devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)] results = [] for device in devices: results.append(decode_jpeg(data, device=device)) assert len(results) == len(devices) for result in results: assert torch.all(result.cpu() == results[0].cpu()) assert current_device == torch.cuda.current_device() assert current_stream == torch.cuda.current_stream() @needs_cuda def test_decode_jpeg_cuda_errors(): data = read_file(next(get_images(IMAGE_ROOT, ".jpg"))) with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"): decode_jpeg(data.reshape(-1, 1), device="cuda") with pytest.raises(ValueError, match="must be tensors"): decode_jpeg([1, 2, 3]) with pytest.raises(ValueError, match="Input tensor must be a CPU tensor"): decode_jpeg(data.to("cuda"), device="cuda") with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"): decode_jpeg(data.to(torch.float), device="cuda") with pytest.raises(RuntimeError, match="Expected the device parameter to be a cuda device"): torch.ops.image.decode_jpegs_cuda([data], ImageReadMode.UNCHANGED.value, "cpu") with pytest.raises(ValueError, match="Input tensor must be a CPU tensor"): decode_jpeg( torch.empty((100,), dtype=torch.uint8, device="cuda"), ) with pytest.raises(ValueError, match="Input list must contain tensors on CPU"): decode_jpeg( [ torch.empty((100,), dtype=torch.uint8, device="cuda"), torch.empty((100,), dtype=torch.uint8, device="cuda"), ] ) with pytest.raises(ValueError, match="Input list must contain tensors on CPU"): decode_jpeg( [ torch.empty((100,), dtype=torch.uint8, device="cuda"), torch.empty((100,), dtype=torch.uint8, device="cuda"), ], device="cuda", ) with pytest.raises(ValueError, match="Input list must contain tensors on CPU"): decode_jpeg( [ torch.empty((100,), dtype=torch.uint8, device="cpu"), torch.empty((100,), dtype=torch.uint8, device="cuda"), ], device="cuda", ) with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"): decode_jpeg( [ torch.empty((100,), dtype=torch.uint8), torch.empty((100,), dtype=torch.float32), ], device="cuda", ) with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"): decode_jpeg( [ torch.empty((100,), dtype=torch.uint8), torch.empty((1, 100), dtype=torch.uint8), ], device="cuda", ) with pytest.raises(RuntimeError, match="Error while decoding JPEG images"): decode_jpeg( [ torch.empty((100,), dtype=torch.uint8), torch.empty((100,), dtype=torch.uint8), ], device="cuda", ) with pytest.raises(ValueError, match="Input list must contain at least one element"): decode_jpeg([], device="cuda") def test_encode_jpeg_errors(): with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32)) with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1) with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101) with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"): encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8)) with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8)) with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((100, 100), dtype=torch.uint8)) @pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031") @pytest.mark.parametrize( "img_path", [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")], ) @pytest.mark.parametrize("scripted", (True, False)) def test_encode_jpeg(img_path, scripted): img = read_image(img_path) pil_img = F.to_pil_image(img) buf = io.BytesIO() pil_img.save(buf, format="JPEG", quality=75) encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8) encode = torch.jit.script(encode_jpeg) if scripted else encode_jpeg for src_img in [img, img.contiguous()]: encoded_jpeg_torch = encode(src_img, quality=75) assert_equal(encoded_jpeg_torch, encoded_jpeg_pil) @needs_cuda def test_encode_jpeg_cuda_device_param(): path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path) data = read_image(path) current_device = torch.cuda.current_device() current_stream = torch.cuda.current_stream() num_devices = torch.cuda.device_count() devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)] results = [] for device in devices: results.append(encode_jpeg(data.to(device=device))) assert len(results) == len(devices) for result in results: assert torch.all(result.cpu() == results[0].cpu()) assert current_device == torch.cuda.current_device() assert current_stream == torch.cuda.current_stream() @needs_cuda @pytest.mark.parametrize( "img_path", [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")], ) @pytest.mark.parametrize("scripted", (False, True)) @pytest.mark.parametrize("contiguous", (False, True)) def test_encode_jpeg_cuda(img_path, scripted, contiguous): decoded_image_tv = read_image(img_path) encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg if "cmyk" in img_path: pytest.xfail("Encoding a CMYK jpeg isn't supported") if decoded_image_tv.shape[0] == 1: pytest.xfail("Decoding a grayscale jpeg isn't supported") # For more detail as to why check out: https://github.com/NVIDIA/cuda-samples/issues/23#issuecomment-559283013 if contiguous: decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.contiguous_format)[0] else: decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.channels_last)[0] encoded_jpeg_cuda_tv = encode_fn(decoded_image_tv.cuda(), quality=75) decoded_jpeg_cuda_tv = decode_jpeg(encoded_jpeg_cuda_tv.cpu()) # the actual encoded bytestreams from libnvjpeg and libjpeg-turbo differ for the same quality # instead, we re-decode the encoded image and compare to the original abs_mean_diff = (decoded_jpeg_cuda_tv.float() - decoded_image_tv.float()).abs().mean().item() assert abs_mean_diff < 3 @needs_cuda def test_encode_jpeg_cuda_sync(): """ Non-regression test for https://github.com/pytorch/vision/issues/8587. Attempts to reproduce an intermittent CUDA stream synchronization bug by randomly creating images and round-tripping them via encode_jpeg and decode_jpeg on the GPU. Fails if the mean difference in uint8 range exceeds 5. """ torch.manual_seed(42) # manual testing shows this bug appearing often in iterations between 50 and 100 # as a synchronization bug, this can't be reliably reproduced max_iterations = 100 threshold = 5.0 # in [0..255] device = torch.device("cuda") for iteration in range(max_iterations): height, width = torch.randint(4000, 5000, size=(2,)) image = torch.linspace(0, 1, steps=height * width, device=device) image = image.view(1, height, width).expand(3, -1, -1) image = (image * 255).clamp(0, 255).to(torch.uint8) jpeg_bytes = encode_jpeg(image, quality=100) decoded_image = decode_jpeg(jpeg_bytes.cpu(), device=device) mean_difference = (image.float() - decoded_image.float()).abs().mean().item() assert mean_difference <= threshold, ( f"Encode/decode mismatch at iteration={iteration}, " f"size={height}x{width}, mean diff={mean_difference:.2f}" ) @pytest.mark.parametrize("device", cpu_and_cuda()) @pytest.mark.parametrize("scripted", (True, False)) @pytest.mark.parametrize("contiguous", (True, False)) def test_encode_jpegs_batch(scripted, contiguous, device): if device == "cpu" and IS_MACOS: pytest.skip("https://github.com/pytorch/vision/issues/8031") decoded_images_tv = [] for jpeg_path in get_images(IMAGE_ROOT, ".jpg"): if "cmyk" in jpeg_path: continue decoded_image = read_image(jpeg_path) if decoded_image.shape[0] == 1: continue if contiguous: decoded_image = decoded_image[None].contiguous(memory_format=torch.contiguous_format)[0] else: decoded_image = decoded_image[None].contiguous(memory_format=torch.channels_last)[0] decoded_images_tv.append(decoded_image) encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg decoded_images_tv_device = [img.to(device=device) for img in decoded_images_tv] encoded_jpegs_tv_device = encode_fn(decoded_images_tv_device, quality=75) encoded_jpegs_tv_device = [decode_jpeg(img.cpu()) for img in encoded_jpegs_tv_device] for original, encoded_decoded in zip(decoded_images_tv, encoded_jpegs_tv_device): c, h, w = original.shape abs_mean_diff = (original.float() - encoded_decoded.float()).abs().mean().item() assert abs_mean_diff < 3 # test multithreaded decoding # in the current version we prevent this by using a lock but we still want to test it num_workers = 10 with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(encode_fn, decoded_images_tv_device) for _ in range(num_workers)] encoded_images_threaded = [future.result() for future in futures] assert len(encoded_images_threaded) == num_workers for encoded_images in encoded_images_threaded: assert len(decoded_images_tv_device) == len(encoded_images) for i, (encoded_image_cuda, decoded_image_tv) in enumerate(zip(encoded_images, decoded_images_tv_device)): # make sure all the threads produce identical outputs assert torch.all(encoded_image_cuda == encoded_images_threaded[0][i]) # make sure the outputs are identical or close enough to baseline decoded_cuda_encoded_image = decode_jpeg(encoded_image_cuda.cpu()) assert decoded_cuda_encoded_image.shape == decoded_image_tv.shape assert decoded_cuda_encoded_image.dtype == decoded_image_tv.dtype assert (decoded_cuda_encoded_image.cpu().float() - decoded_image_tv.cpu().float()).abs().mean() < 3 @needs_cuda def test_single_encode_jpeg_cuda_errors(): with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32, device="cuda")) with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"): encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda")) with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"): encode_jpeg(torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda")) with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda")) with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((100, 100), dtype=torch.uint8, device="cuda")) @needs_cuda def test_batch_encode_jpegs_cuda_errors(): with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"), ] ) with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"), ] ) with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"), ] ) with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"), ] ) with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), torch.empty((100, 100), dtype=torch.uint8, device="cuda"), ] ) with pytest.raises(RuntimeError, match="Input tensor should be on CPU"): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"), torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), ] ) with pytest.raises( RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg" ): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"), torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"), ] ) if torch.cuda.device_count() >= 2: with pytest.raises( RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg" ): encode_jpeg( [ torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:0"), torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:1"), ] ) with pytest.raises(ValueError, match="encode_jpeg requires at least one input tensor when a list is passed"): encode_jpeg([]) @pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031") @pytest.mark.parametrize( "img_path", [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")], ) @pytest.mark.parametrize("scripted", (True, False)) def test_write_jpeg(img_path, tmpdir, scripted): tmpdir = Path(tmpdir) img = read_image(img_path) pil_img = F.to_pil_image(img) torch_jpeg = str(tmpdir / "torch.jpg") pil_jpeg = str(tmpdir / "pil.jpg") write = torch.jit.script(write_jpeg) if scripted else write_jpeg write(img, torch_jpeg, quality=75) pil_img.save(pil_jpeg, quality=75) with open(torch_jpeg, "rb") as f: torch_bytes = f.read() with open(pil_jpeg, "rb") as f: pil_bytes = f.read() assert_equal(torch_bytes, pil_bytes) def test_pathlib_support(tmpdir): # Just make sure pathlib.Path is supported where relevant jpeg_path = Path(next(get_images(ENCODE_JPEG, ".jpg"))) read_file(jpeg_path) read_image(jpeg_path) write_path = Path(tmpdir) / "whatever" img = torch.randint(0, 10, size=(3, 4, 4), dtype=torch.uint8) write_file(write_path, data=img.flatten()) write_jpeg(img, write_path) write_png(img, write_path) @pytest.mark.parametrize( "name", ("gifgrid", "fire", "porsche", "treescap", "treescap-interlaced", "solid2", "x-trans", "earth") ) @pytest.mark.parametrize("scripted", (True, False)) def test_decode_gif(tmpdir, name, scripted): # Using test images from GIFLIB # https://sourceforge.net/p/giflib/code/ci/master/tree/pic/, we assert PIL # and torchvision decoded outputs are equal. # We're not testing against "welcome2" because PIL and GIFLIB disagee on what # the background color should be (likely a difference in the way they handle # transparency?) # 'earth' image is from wikipedia, licensed under CC BY-SA 3.0 # https://creativecommons.org/licenses/by-sa/3.0/ # it allows to properly test for transparency, TOP-LEFT offsets, and # disposal modes. path = tmpdir / f"{name}.gif" if name == "earth": if IN_OSS_CI: # TODO: Fix this... one day. pytest.skip("Skipping 'earth' test as it's flaky on OSS CI") url = "https://upload.wikimedia.org/wikipedia/commons/2/2c/Rotating_earth_%28large%29.gif" else: url = f"https://sourceforge.net/p/giflib/code/ci/master/tree/pic/{name}.gif?format=raw" with open(path, "wb") as f: f.write(requests.get(url).content) encoded_bytes = read_file(path) f = torch.jit.script(decode_gif) if scripted else decode_gif tv_out = f(encoded_bytes) if tv_out.ndim == 3: tv_out = tv_out[None] assert tv_out.is_contiguous(memory_format=torch.channels_last) # For some reason, not using Image.open() as a CM causes "ResourceWarning: unclosed file" with Image.open(path) as pil_img: pil_seq = ImageSequence.Iterator(pil_img) for pil_frame, tv_frame in zip(pil_seq, tv_out): pil_frame = F.pil_to_tensor(pil_frame.convert("RGB")) torch.testing.assert_close(tv_frame, pil_frame, atol=0, rtol=0) @pytest.mark.parametrize( "decode_fun, match", [ (decode_png, "Content is not png"), (decode_jpeg, "Not a JPEG file"), (decode_gif, re.escape("DGifOpenFileName() failed - 103")), (decode_webp, "WebPGetFeatures failed."), pytest.param( decode_avif, "BMFF parsing failed", # marks=pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE) marks=pytest.mark.skipif(True, reason="Skipping avif/heic tests for now."), ), pytest.param( decode_heic, "Invalid input: No 'ftyp' box", # marks=pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE), marks=pytest.mark.skipif(True, reason="Skipping avif/heic tests for now."), ), ], ) def test_decode_bad_encoded_data(decode_fun, match): encoded_data = torch.randint(0, 256, (100,), dtype=torch.uint8) with pytest.raises(RuntimeError, match="Input tensor must be 1-dimensional"): decode_fun(encoded_data[None]) with pytest.raises(RuntimeError, match="Input tensor must have uint8 data type"): decode_fun(encoded_data.float()) with pytest.raises(RuntimeError, match="Input tensor must be contiguous"): decode_fun(encoded_data[::2]) with pytest.raises(RuntimeError, match=match): decode_fun(encoded_data) @pytest.mark.parametrize("decode_fun", (decode_webp, decode_image)) @pytest.mark.parametrize("scripted", (False, True)) def test_decode_webp(decode_fun, scripted): encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".webp"))) if scripted: decode_fun = torch.jit.script(decode_fun) img = decode_fun(encoded_bytes) assert img.shape == (3, 100, 100) assert img[None].is_contiguous(memory_format=torch.channels_last) img += 123 # make sure image buffer wasn't freed by underlying decoding lib @pytest.mark.parametrize("decode_fun", (decode_webp, decode_image)) def test_decode_webp_grayscale(decode_fun, capfd): encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".webp"))) # We warn at the C++ layer because for decode_image(), we don't do the image # type dispatch until we get to the C++ version of decode_image(). We could # warn at the Python layer in decode_webp(), but then users would get a # double wanring: one from the Python layer and one from the C++ layer. # # Because we use the TORCH_WARN_ONCE macro, we need to do this dance to # temporarily always warn so we can test. @contextlib.contextmanager def set_always_warn(): torch._C._set_warnAlways(True) yield torch._C._set_warnAlways(False) with set_always_warn(): img = decode_fun(encoded_bytes, mode=ImageReadMode.GRAY) assert "Webp does not support grayscale conversions" in capfd.readouterr().err # Note that because we do not support grayscale conversions, we expect # that the number of color channels is still 3. assert img.shape == (3, 100, 100) # This test is skipped by default because it requires webp images that we're not # including within the repo. The test images were downloaded manually from the # different pages of https://developers.google.com/speed/webp/gallery @pytest.mark.skipif(not WEBP_TEST_IMAGES_DIR, reason="WEBP_TEST_IMAGES_DIR is not set") @pytest.mark.parametrize("decode_fun", (decode_webp, decode_image)) @pytest.mark.parametrize("scripted", (False, True)) @pytest.mark.parametrize( "mode, pil_mode", ( # Note that converting an RGBA image to RGB leads to bad results because the # transparent pixels aren't necessarily set to "black" or "white", they can be # random stuff. This is consistent with PIL results. (ImageReadMode.RGB, "RGB"), (ImageReadMode.RGB_ALPHA, "RGBA"), (ImageReadMode.UNCHANGED, None), ), ) @pytest.mark.parametrize("filename", Path(WEBP_TEST_IMAGES_DIR).glob("*.webp"), ids=lambda p: p.name) def test_decode_webp_against_pil(decode_fun, scripted, mode, pil_mode, filename): encoded_bytes = read_file(filename) if scripted: decode_fun = torch.jit.script(decode_fun) img = decode_fun(encoded_bytes, mode=mode) assert img[None].is_contiguous(memory_format=torch.channels_last) pil_img = Image.open(filename).convert(pil_mode) from_pil = F.pil_to_tensor(pil_img) assert_equal(img, from_pil) img += 123 # make sure image buffer wasn't freed by underlying decoding lib # @pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE) @pytest.mark.skipif(True, reason="Skipping avif/heic tests for now.") @pytest.mark.parametrize("decode_fun", (decode_avif,)) def test_decode_avif(decode_fun): encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".avif"))) img = decode_fun(encoded_bytes) assert img.shape == (3, 100, 100) assert img[None].is_contiguous(memory_format=torch.channels_last) img += 123 # make sure image buffer wasn't freed by underlying decoding lib # Note: decode_image fails because some of these files have a (valid) signature # we don't recognize. We should probably use libmagic.... # @pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE) @pytest.mark.skipif(True, reason="Skipping avif/heic tests for now.") @pytest.mark.parametrize("decode_fun", (decode_avif, decode_heic)) @pytest.mark.parametrize( "mode, pil_mode", ( (ImageReadMode.RGB, "RGB"), (ImageReadMode.RGB_ALPHA, "RGBA"), (ImageReadMode.UNCHANGED, None), ), ) @pytest.mark.parametrize( "filename", Path("/home/nicolashug/dev/libavif/tests/data/").glob("*.avif"), ids=lambda p: p.name ) def test_decode_avif_heic_against_pil(decode_fun, mode, pil_mode, filename): if "reversed_dimg_order" in str(filename): # Pillow properly decodes this one, but we don't (order of parts of the # image is wrong). This is due to a bug that was recently fixed in # libavif. Hopefully this test will end up passing soon with a new # libavif version https://github.com/AOMediaCodec/libavif/issues/2311 pytest.xfail() import pillow_avif # noqa encoded_bytes = read_file(filename) try: img = decode_fun(encoded_bytes, mode=mode) except RuntimeError as e: if any( s in str(e) for s in ( "BMFF parsing failed", "avifDecoderParse failed: ", "file contains more than one image", "no 'ispe' property", "'iref' has double references", "Invalid image grid", "decode_heif failed: Invalid input: No 'meta' box", ) ): pytest.skip(reason="Expected failure, that's OK") else: raise e assert img[None].is_contiguous(memory_format=torch.channels_last) if mode == ImageReadMode.RGB: assert img.shape[0] == 3 if mode == ImageReadMode.RGB_ALPHA: assert img.shape[0] == 4 if img.dtype == torch.uint16: img = F.to_dtype(img, dtype=torch.uint8, scale=True) try: from_pil = F.pil_to_tensor(Image.open(filename).convert(pil_mode)) except RuntimeError as e: if any(s in str(e) for s in ("Invalid image grid", "Failed to decode image: Not implemented")): pytest.skip(reason="PIL failure") else: raise e if True: from torchvision.utils import make_grid g = make_grid([img, from_pil]) F.to_pil_image(g).save(f"/home/nicolashug/out_images/{filename.name}.{pil_mode}.png") is_decode_heic = getattr(decode_fun, "__name__", getattr(decode_fun, "name", None)) == "decode_heic" if mode == ImageReadMode.RGB and not is_decode_heic: # We don't compare torchvision's AVIF against PIL for RGB because # results look pretty different on RGBA images (other images are fine). # The result on torchvision basically just plainly ignores the alpha # channel, resuting in transparent pixels looking dark. PIL seems to be # using a sort of k-nn thing (Take a look at the resuting images) return if filename.name == "sofa_grid1x5_420.avif" and is_decode_heic: return torch.testing.assert_close(img, from_pil, rtol=0, atol=3) # @pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE) @pytest.mark.skipif(True, reason="Skipping avif/heic tests for now.") @pytest.mark.parametrize("decode_fun", (decode_heic,)) def test_decode_heic(decode_fun): encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".heic"))) img = decode_fun(encoded_bytes) assert img.shape == (3, 100, 100) assert img[None].is_contiguous(memory_format=torch.channels_last) img += 123 # make sure image buffer wasn't freed by underlying decoding lib @pytest.mark.parametrize("input_type", ("Path", "str", "tensor")) @pytest.mark.parametrize("scripted", (False, True)) def test_decode_image_path(input_type, scripted): # Check that decode_image can support not just tensors as input path = next(get_images(IMAGE_ROOT, ".jpg")) if input_type == "Path": input = Path(path) elif input_type == "str": input = path elif input_type == "tensor": input = read_file(path) else: raise ValueError("Oops") if scripted and input_type == "Path": pytest.xfail(reason="Can't pass a Path when scripting") decode_fun = torch.jit.script(decode_image) if scripted else decode_image decode_fun(input) def test_mode_str(): # Make sure decode_image supports string modes. We just test decode_image, # not all of the decoding functions, but they should all support that too. # Torchscript fails when passing strings, which is expected. path = next(get_images(IMAGE_ROOT, ".png")) assert decode_image(path, mode="RGB").shape[0] == 3 assert decode_image(path, mode="rGb").shape[0] == 3 assert decode_image(path, mode="GRAY").shape[0] == 1 assert decode_image(path, mode="RGBA").shape[0] == 4 if __name__ == "__main__": pytest.main([__file__])