/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include "./TransposeUtils.h" #include "./TransposeUtilsSve.h" namespace fbgemm { namespace internal { #if HAVE_SVE template <> void transpose_sve( int64_t M, int64_t N, const float* src, int64_t ld_src, float* dst, int64_t ld_dst) { int64_t ib = 0, jb = 0; int64_t x = (N & 7) ^ 4; if (x > 4) { // If the remainder has n < 4 columns, we use the SSE kernel for the // remainder because it requires 2 * (2 * 4 + 2 * N) = 16 + 4N instructions // instead of 3 * 8 + 2 * N = 24 + 2N instructions in the masked AVX2 // kernel. for (ib = 0; ib + 8 <= M; ib += 8) { for (jb = 0; jb + 8 <= N; jb += 8) { transpose_kernel_8x8_sve( &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } for (int64_t i = ib; i < ib + 8; i += 4) { transpose_kernel_mxn_small_sve<4>( N - jb, &src[i * ld_src + jb], ld_src, &dst[i + jb * ld_dst], ld_dst); } } } else if (x == 0) { // If the remainder has 4 columns, we use the SSE kernel for the remainder // because it requires 2 * 16 = 32 instructions instead of 3 * 8 + 2 * 4 = // 32 instructions + looping overhead needed in the masked AVX2 kernel. for (ib = 0; ib + 8 <= M; ib += 8) { for (jb = 0; jb + 8 <= N; jb += 8) { transpose_kernel_8x8_sve( &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } for (int64_t i = ib; i < ib + 8; i += 4) { transpose_kernel_4x4_sve( &src[i * ld_src + jb], ld_src, &dst[i + jb * ld_dst], ld_dst); } } } else { for (ib = 0; ib + 8 <= M; ib += 8) { for (jb = 0; jb + 8 <= N; jb += 8) { transpose_kernel_8x8_sve( &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_large_sve<8>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } } } // Specialization for small M - ib cases so that the compiler can inline // transpose_kernel_mxn_avx2 and unroll the loops whose iteration count // depends on by M - ib . // Specialization for m helps more than for n in transpose_kernel_mxn_avx2 // because we have more loops in that function whose iteration count depends // on m. switch (M - ib) { case 1: for (int64_t j = 0; j < N; ++j) { dst[ib + j * ld_dst] = src[ib * ld_src + j]; } break; case 2: for (jb = 0; jb + 4 <= N; jb += 4) { transpose_kernel_mxn_small_sve<2>( 4, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_small_sve<2>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } break; case 3: for (jb = 0; jb + 4 <= N; jb += 4) { transpose_kernel_mxn_small_sve<3>( 4, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_small_sve<3>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } break; case 4: for (jb = 0; jb + 4 <= N; jb += 4) { transpose_kernel_4x4_sve( &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_small_sve<4>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } break; case 5: for (jb = 0; jb + 8 <= N; jb += 8) { transpose_kernel_mxn_large_sve<5>( 8, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_large_sve<5>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } break; case 6: for (jb = 0; jb + 8 <= N; jb += 8) { transpose_kernel_mxn_large_sve<6>( 8, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_large_sve<6>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } break; case 7: for (jb = 0; jb + 8 <= N; jb += 8) { transpose_kernel_mxn_large_sve<7>( 8, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } if (jb < N) { transpose_kernel_mxn_large_sve<7>( N - jb, &src[ib * ld_src + jb], ld_src, &dst[ib + jb * ld_dst], ld_dst); } break; } } #endif // HAVE_SVE } // namespace internal } // namespace fbgemm