# Adapted from https://github.com/Dao-AILab/flash-attention/blob/b31ae1e4cd22cf5f820a2995b74b7cd3bd54355a/tests/cute/test_flash_attn.py # Copyright (c) 2025, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. import itertools import math from functools import partial import pytest import torch import torch.nn.functional as F from einops import rearrange, repeat from sgl_kernel.flash_attn import flash_attn_varlen_func from utils import is_hopper flash_attn_varlen_func = partial(flash_attn_varlen_func, ver=4) def unpad_input(hidden_states, attention_mask, unused_mask=None): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask. indices: (total_nnz), the indices of masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask. """ all_masks = ( (attention_mask + unused_mask) if unused_mask is not None else attention_mask ) seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32) used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. return ( rearrange(hidden_states, "b s ... -> (b s) ...")[indices], indices, cu_seqlens, max_seqlen_in_batch, used_seqlens_in_batch, ) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. batch: int, batch size for the padded sequence. seqlen: int, maximum sequence length for the padded sequence. Return: hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[1:] output = torch.zeros( (batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype ) output[indices] = hidden_states return rearrange(output, "(b s) ... -> b s ...", b=batch) def generate_random_padding_mask( max_seqlen, batch_size, device, mode="random", zero_lengths=False ): assert mode in ["full", "random", "third"] if mode == "full": lengths = torch.full( (batch_size, 1), max_seqlen, device=device, dtype=torch.int32 ) elif mode == "random": lengths = torch.randint( max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device, ) elif mode == "third": lengths = torch.randint( max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device ) if zero_lengths: # Generate zero-lengths every 5 batches and the last batch. for i in range(batch_size): if i % 5 == 0: lengths[i] = 0 lengths[-1] = 0 padding_mask = ( repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths ) return padding_mask def generate_qkv( q, k, v, query_padding_mask=None, key_padding_mask=None, qv=None, kvpacked=False, qkvpacked=False, query_unused_mask=None, key_unused_mask=None, ): """ Arguments: q: (batch_size, seqlen_q, nheads, d) k: (batch_size, seqlen_k, nheads_k, d) v: (batch_size, seqlen_k, nheads_k, d_v) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen_q, nheads, d = q.shape d_v = v.shape[-1] _, seqlen_k, nheads_k, _ = k.shape assert k.shape == (batch_size, seqlen_k, nheads_k, d) assert v.shape == (batch_size, seqlen_k, nheads_k, d_v) if query_unused_mask is not None or key_unused_mask is not None: assert not kvpacked assert not qkvpacked if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input( q, query_padding_mask, query_unused_mask ) output_pad_fn = lambda output_unpad: pad_input( output_unpad, indices_q, batch_size, seqlen_q ) qv_unpad = ( rearrange(qv, "b s ... -> (b s) ...")[indices_q] if qv is not None else None ) else: q_unpad = rearrange(q, "b s h d -> (b s) h d") cu_seqlens_q = torch.arange( 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device, ) seqused_q = None max_seqlen_q = seqlen_q output_pad_fn = lambda output_unpad: rearrange( output_unpad, "(b s) h d -> b s h d", b=batch_size ) qv_unpad = rearrange(qv, "b s ... -> (b s) ...") if qv is not None else None if key_padding_mask is not None: k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input( k, key_padding_mask, key_unused_mask ) v_unpad, *rest = unpad_input(v, key_padding_mask, key_unused_mask) else: k_unpad = rearrange(k, "b s h d -> (b s) h d") v_unpad = rearrange(v, "b s h d -> (b s) h d") cu_seqlens_k = torch.arange( 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device, ) seqused_k = None max_seqlen_k = seqlen_k if qkvpacked: assert (query_padding_mask == key_padding_mask).all() assert nheads == nheads_k qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = torch.stack([q, k, v], dim=2) if query_padding_mask is not None: dqkv_pad_fn = lambda dqkv_unpad: pad_input( dqkv_unpad, indices_q, batch_size, seqlen_q ) else: dqkv_pad_fn = lambda dqkv_unpad: rearrange( dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size ) return ( qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q, qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn, ) elif kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) kv = torch.stack([k, v], dim=2) dq_pad_fn = output_pad_fn if key_padding_mask is not None: dkv_pad_fn = lambda dkv_unpad: pad_input( dkv_unpad, indices_k, batch_size, seqlen_k ) else: dkv_pad_fn = lambda dkv_unpad: rearrange( dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size ) return ( q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), kv.detach().requires_grad_(), output_pad_fn, dq_pad_fn, dkv_pad_fn, ) else: dq_pad_fn = output_pad_fn if key_padding_mask is not None: dk_pad_fn = lambda dk_unpad: pad_input( dk_unpad, indices_k, batch_size, seqlen_k ) else: dk_pad_fn = lambda dk_unpad: rearrange( dk_unpad, "(b s) h d -> b s h d", b=batch_size ) return ( q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(), v_unpad.detach().requires_grad_(), qv_unpad.detach() if qv is not None else None, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), k.detach().requires_grad_(), v.detach().requires_grad_(), qv.detach() if qv is not None else None, output_pad_fn, dq_pad_fn, dk_pad_fn, ) def construct_local_mask( seqlen_q, seqlen_k, window_size=(None, None), sink_token_length=0, query_padding_mask=None, key_padding_mask=None, key_leftpad=None, device=None, ): row_idx = rearrange( torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1" ) col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long) if key_leftpad is not None: key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1") col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0]) col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32) sk = ( seqlen_k if key_padding_mask is None else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") ) sq = ( seqlen_q if query_padding_mask is None else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1") ) if window_size[0] is None: return col_idx > row_idx + sk - sq + window_size[1] else: sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk return torch.logical_or( col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk), torch.logical_and( col_idx < row_idx + sk - sq - window_size[0], col_idx >= sink_token_length, ), ) def construct_chunk_mask( seqlen_q, seqlen_k, attention_chunk, query_padding_mask=None, key_padding_mask=None, key_leftpad=None, device=None, ): row_idx = rearrange( torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1" ) col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long) if key_leftpad is not None: key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1") col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0]) col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32) sk = ( seqlen_k if key_padding_mask is None else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") ) sq = ( seqlen_q if query_padding_mask is None else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1") ) sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk # Subtract remainder instead of divide and then multiply to take care of negative values col_limit_left_chunk = row_idx + sk - sq - (row_idx + sk - sq) % attention_chunk return torch.logical_or( col_idx < col_limit_left_chunk, col_idx >= col_limit_left_chunk + attention_chunk, ) def attention_ref( q, k, v, query_padding_mask=None, key_padding_mask=None, key_leftpad=None, attn_bias=None, dropout_p=0.0, dropout_mask=None, causal=False, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(None, None), attention_chunk=0, sink_token_length=0, learnable_sink=None, softcap=0.0, upcast=True, reorder_ops=False, intermediate_dtype=None, ): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k: (batch_size, seqlen_k, nheads, head_dim) v: (batch_size, seqlen_k, nheads, head_dim_v) qv: (batch_size, seqlen_q, nheads, head_dim_v) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k) dropout_p: float dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k) causal: whether to apply causal masking upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast output back to fp16/bf16. reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.) without changing the math. This is to estimate the numerical error from operation reordering. Output: output: (batch_size, seqlen_q, nheads, head_dim_v) attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout """ if causal: window_size = (window_size[0], 0) dtype_og = q.dtype if upcast: q, k, v = q.float(), k.float(), v.float() qv = qv.float() if qv is not None else None if q_descale is not None: q_descale = repeat(q_descale, "b h -> b 1 (h g) 1", g=q.shape[2] // k.shape[2]) q = (q.float() * q_descale).to(q.dtype) qv = (qv.float() * q_descale).to(qv.dtype) if qv is not None else None if k_descale is not None: k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype) if v_descale is not None: v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype) seqlen_q, seqlen_k = q.shape[1], k.shape[1] k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2]) v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2]) d = q.shape[-1] dv = v.shape[-1] softmax_scale = 1.0 / math.sqrt(d if qv is None else d + dv) if not reorder_ops: scores = torch.einsum("bthd,bshd->bhts", q * softmax_scale, k) else: scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) if qv is not None: scores = scores + torch.einsum("bthd,bshd->bhts", qv * softmax_scale, v) if softcap > 0: scores = torch.tanh(scores / softcap) * softcap if key_padding_mask is not None: scores.masked_fill_( rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf") ) local_mask = None if window_size[0] is not None or window_size[1] is not None: local_mask = construct_local_mask( seqlen_q, seqlen_k, window_size, sink_token_length, query_padding_mask, key_padding_mask, key_leftpad=key_leftpad, device=q.device, ) if attention_chunk > 0: chunk_mask = construct_chunk_mask( seqlen_q, seqlen_k, attention_chunk, query_padding_mask, key_padding_mask, key_leftpad=key_leftpad, device=q.device, ) local_mask = ( torch.logical_or(local_mask, chunk_mask) if local_mask is not None else chunk_mask ) if local_mask is not None: scores.masked_fill_(local_mask, float("-inf")) if attn_bias is not None: scores = scores + attn_bias if learnable_sink is None: attention = torch.softmax(scores, dim=-1).to(v.dtype) else: scores_fp32 = scores.to(torch.float32) logits_max = torch.amax(scores_fp32, dim=-1, keepdim=True) learnable_sink = rearrange(learnable_sink, "h -> h 1 1") logits_or_sinks_max = torch.maximum(learnable_sink, logits_max) unnormalized_scores = torch.exp(scores_fp32 - logits_or_sinks_max) normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + torch.exp( learnable_sink - logits_or_sinks_max ) attention = (unnormalized_scores / normalizer).to(v.dtype) # We want to mask here so that the attention matrix doesn't have any NaNs # Otherwise we'll get NaN in dV if query_padding_mask is not None: attention = attention.masked_fill( rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0 ) # Without this we might get NaN in dv if key_padding_mask is not None: attention = attention.masked_fill( rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0 ) # Some rows might be completely masked out so we fill them with zero instead of NaN if local_mask is not None: attention = attention.masked_fill( torch.all(local_mask, dim=-1, keepdim=True), 0.0 ) dropout_scaling = 1.0 / (1 - dropout_p) # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling # output = torch.einsum('bhts,bshd->bthd', attention_drop , v) if dropout_mask is not None: attention_drop = attention.masked_fill(~dropout_mask, 0.0) else: attention_drop = attention if intermediate_dtype is not None: attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype) output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling) if query_padding_mask is not None: output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0) return output.to(dtype=dtype_og), attention.to(dtype=dtype_og) @pytest.mark.skipif( is_hopper(), reason="skip on hopper", ) # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn]) @pytest.mark.parametrize("dtype", [torch.bfloat16]) @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"]) # @pytest.mark.parametrize("mha_type", ["mqa"]) @pytest.mark.parametrize("has_learnable_sink", [False, True]) # @pytest.mark.parametrize("has_learnable_sink", [False]) # @pytest.mark.parametrize("has_qv", [False, True]) @pytest.mark.parametrize("has_qv", [False]) # @pytest.mark.parametrize("deterministic", [False, True]) @pytest.mark.parametrize("deterministic", [False]) # @pytest.mark.parametrize("softcap", [0.0, 15.0]) @pytest.mark.parametrize("softcap", [0.0]) @pytest.mark.parametrize("local", [False, True]) # @pytest.mark.parametrize("local", [False]) @pytest.mark.parametrize("causal", [False, True]) # @pytest.mark.parametrize("causal", [False]) # @pytest.mark.parametrize("add_unused_qkv", [False, True]) @pytest.mark.parametrize("add_unused_qkv", [False]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256]) # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [56, 80]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128]) # @pytest.mark.parametrize("d", [64, 96, 128]) @pytest.mark.parametrize("d", [128, 192]) # @pytest.mark.parametrize("d", [192]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ # (1, 1), # (1, 3), # (2, 1), (511, 1), (3, 513), (64, 128), (128, 128), (256, 256), (113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (307, 256), (640, 128), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048), ], ) def test_flash_attn_varlen_output( seqlen_q, seqlen_k, d, add_unused_qkv, causal, local, softcap, deterministic, has_qv, has_learnable_sink, mha_type, dtype, ): if ( causal or local ): # Right now we only support causal attention with seqlen_k == seqlen_q seqlen_k = seqlen_q device = "cuda" # set seed torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local)) batch_size = 49 if seqlen_q <= 1024 else 7 nheads = 6 # batch_size = 1 # nheads = 1 nheads_kv = nheads if mha_type == "mha" else (3 if mha_type == "gqa" else 1) dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype # dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d]) dv_vals = [128] if d == 192 else ([d] if d != 128 else [64, d]) if dtype == torch.float8_e4m3fn: dv_vals = [d] # attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if seqlen_q <= seqlen_k else [0] attention_chunk_vals = [0] for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals): q_ref = torch.randn( batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref ) if softcap > 0.0: # Ensure the values of qk are at least within softcap range. q_ref = (q_ref * softcap / 4).detach().requires_grad_() q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_() k_ref = ( torch.randn( batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) .requires_grad_() ) v_ref = ( torch.randn( batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) .requires_grad_() ) if has_qv: qv_ref = ( torch.randn( batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) ) else: qv_ref = None # Put window_size after QKV randn so that window_size changes from test to test window_size = ( (None, None) if not local else torch.randint(0, seqlen_k, (2,)).tolist() ) if has_learnable_sink: learnable_sink = torch.randn(nheads, dtype=torch.bfloat16, device=device) else: learnable_sink = None if dtype == torch.float8_e4m3fn: q_descale, k_descale, v_descale = [ torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3) ] else: q_descale, k_descale, v_descale = None, None, None q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)] qv = qv_ref.detach() if has_qv else None query_padding_mask = generate_random_padding_mask( seqlen_q, batch_size, device, mode="random", zero_lengths=False ) # TODO: test zero_lengths key_padding_mask = generate_random_padding_mask( # seqlen_k, batch_size, device, mode="random", zero_lengths=True seqlen_k, batch_size, device, mode="random", zero_lengths=False, ) def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device): if add_unused: another_mask = generate_random_padding_mask(max_seq_len, bs, device) attn_mask = torch.logical_and(padding_mask, another_mask) unused_mask = torch.logical_xor( torch.logical_or(padding_mask, another_mask), attn_mask ) else: attn_mask = padding_mask unused_mask = None return attn_mask, unused_mask query_padding_mask, query_unused_mask = _gen_unused_masks( query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device ) # query_padding_mask[:] = True # query_unused_mask = None key_padding_mask, key_unused_mask = _gen_unused_masks( key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device ) if causal or local: key_padding_mask = query_padding_mask ( q_unpad, k_unpad, v_unpad, qv_unpad, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, q, k, v, qv, output_pad_fn, dq_pad_fn, dk_pad_fn, ) = generate_qkv( q, k, v, query_padding_mask, key_padding_mask, qv=qv, kvpacked=False, query_unused_mask=query_unused_mask, key_unused_mask=key_unused_mask, ) q_unpad, k_unpad, v_unpad = [ x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad) ] out_ref, attn_ref = attention_ref( q_ref, k_ref, v_ref, query_padding_mask, key_padding_mask, causal=causal, qv=qv_ref, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, attention_chunk=attention_chunk, learnable_sink=learnable_sink, softcap=softcap, ) out_pt, attn_pt = attention_ref( q_ref, k_ref, v_ref, query_padding_mask, key_padding_mask, causal=causal, qv=qv_ref, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, attention_chunk=attention_chunk, learnable_sink=learnable_sink, softcap=softcap, upcast=False, reorder_ops=True, intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None, ) print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") if query_unused_mask is not None: q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1") # Numerical error if we just do any arithmetic on out_ref fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item() rtol = 2 if softcap == 0.0 else 3 pack_gqa_vals = [False, True, None] # num_splits_vals = [1, 3] num_splits_vals = [1] for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals): out_unpad, lse = flash_attn_varlen_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=None, max_seqlen_k=None, # seqused_q=seqused_q, # seqused_k=seqused_k, causal=causal, # qv=qv_unpad, # q_descale=q_descale, # k_descale=k_descale, v_descale=v_descale, window_size=window_size, # attention_chunk=attention_chunk, sinks=learnable_sink, softcap=softcap, pack_gqa=pack_gqa, return_softmax_lse=True, ) out = output_pad_fn(out_unpad) if query_unused_mask is not None: out.masked_fill_(q_zero_masking, 0.0) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") # if not causal: # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}") # breakpoint() # Check that FlashAttention's numerical error is at most 3x the numerical error # of a Pytorch implementation. assert (out - out_ref).abs().max().item() <= rtol * ( out_pt - out_ref ).abs().max().item() + fwd_atol if ( dtype != torch.float8_e4m3fn and not has_qv and not dv > 256 and not attention_chunk != 0 and dv == d and not has_learnable_sink and False ): g_unpad = torch.randn_like(out_unpad) do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2) # import flash_attn_3_cuda # dq_unpad, dk_unpad, dv_unpad, softmax_d, dq_accum, lse_log2 = flash_attn_3_cuda.bwd_varlen( # g_unpad, # q_unpad, # k_unpad, # v_unpad, # out_unpad, # lse, # None, # None, # None, # cu_seqlens_q, # cu_seqlens_k, # None, None, # max_seqlen_q, # max_seqlen_k, # d ** (-0.5), # causal, # window_size[0], window_size[1], # softcap, # deterministic, # 0, # sm_margin # ) dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad( out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad ) dq = dq_pad_fn(dq_unpad) dk = dk_pad_fn(dk_unpad) dv = dk_pad_fn(dv_unpad) if key_unused_mask is not None: k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1") dk.masked_fill_(k_zero_masking, 0.0) dv.masked_fill_(k_zero_masking, 0.0) if query_unused_mask is not None: dq.masked_fill_(q_zero_masking, 0.0) # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}") # assert (softmax_d - do_o).abs().max().item() <= 1e-5 # assert dq_accum.abs().max().item() == 0.0 g = output_pad_fn(g_unpad) # qk = torch.einsum('bthd,bshd->bhts', q / (d ** 0.5), k).float() # qk = torch.masked_fill(qk, rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf")) # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float()) # P = torch.softmax(qk, -1) # dP = P * (dS - (g.float() * out.float()).sum(-1).transpose(1, 2).unsqueeze(-1)) # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float()) # dV = torch.einsum('bhts,bthd->bshd', P, g.float()) # dK = torch.einsum('bhts,bthd->bshd', dP, q.float()) # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g) dq_ref, dk_ref, dv_ref = torch.autograd.grad( out_ref, (q_ref, k_ref, v_ref), g ) dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g) print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}") print(f"dK max diff: {(dk - dk_ref).abs().max().item()}") print(f"dV max diff: {(dv - dv_ref).abs().max().item()}") print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}") print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}") print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}") print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}") print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}") print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}") print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}") print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}") print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}") # breakpoint() dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + ( 0 if softcap == 0 else 3e-4 ) assert (dq - dq_ref).abs().max().item() <= rtol * ( dq_pt - dq_ref ).abs().max().item() + dq_atol dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + ( 0 if softcap == 0 else 3e-4 ) assert (dk - dk_ref).abs().max().item() <= rtol * ( dk_pt - dk_ref ).abs().max().item() + dk_atol dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + ( 0 if softcap == 0 else 3e-4 ) assert (dv - dv_ref).abs().max().item() <= rtol * ( dv_pt - dv_ref ).abs().max().item() + dv_atol if __name__ == "__main__": pytest.main([__file__])