/* * Copyright (c) 2025 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "pytorch_extension_utils.h" using namespace flashinfer; #define DISPATCH_PYTORCH_INPUT_OUTPUT_DTYPE(input_dtype, output_dtype, c_type_in, c_type_out, ...) \ [&]() -> bool { \ return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(output_dtype, c_type_out, [&] { \ return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(input_dtype, c_type_in, \ [&] { return __VA_ARGS__(); }); \ }); \ }() #define DISPATCH_SCALE_GRANULARITY(scale_granularity_m, scale_granularity_n, scale_granularity_k, \ SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, \ ...) \ [&]() -> bool { \ /* SM120 Cooperative schedule uses 128x128x128 tile shape */ \ /* TODO (yongwww): PingPong schedule (64x128x128) will need additional dispatch logic */ \ constexpr int SCALE_GRANULARITY_K = 128; \ if (scale_granularity_k != 128) { \ TORCH_CHECK( \ false, \ "SM120 requires scale_granularity_k=128. CUTLASS enforces ScaleGranularityK must equal " \ "tile shape K dimension (128 for both Cooperative and PingPong schedules)."); \ return false; \ } \ /* Support (1,128,128) and (128,128,128) as per SM100's approach */ \ if (scale_granularity_m == 1 && scale_granularity_n == 128) { \ constexpr int SCALE_GRANULARITY_M = 1; \ constexpr int SCALE_GRANULARITY_N = 128; \ return __VA_ARGS__(); \ } else if (scale_granularity_m == 128 && scale_granularity_n == 128) { \ constexpr int SCALE_GRANULARITY_M = 128; \ constexpr int SCALE_GRANULARITY_N = 128; \ return __VA_ARGS__(); \ } \ TORCH_CHECK(false, "SM120: Unsupported scale granularity combination (", scale_granularity_m, \ ",", scale_granularity_n, ",", scale_granularity_k, ")"); \ return false; \ }() #define DISPATCH_SCALE_MAJOR_K(scale_major_mode, SCALE_MAJOR_K, ...) \ [&]() -> bool { \ if (scale_major_mode == "K") { \ constexpr bool SCALE_MAJOR_K = true; \ return __VA_ARGS__(); \ } else if (scale_major_mode == "MN") { \ constexpr bool SCALE_MAJOR_K = false; \ return __VA_ARGS__(); \ } \ TORCH_CHECK(false, "Unsupported Scale Major Mode"); \ return false; \ }() namespace flashinfer { namespace gemm { template cudaError_t CutlassGroupwiseScaledGEMMSM120(void* float_buffer, size_t float_buffer_size_in_bytes, DTypeIn* A_ptr, DTypeIn* B_ptr, float* SFA_ptr, float* SFB_ptr, DTypeOut* C_ptr, int m, int n, int k, int l, cudaStream_t stream); } // namespace gemm } // namespace flashinfer void CutlassGemmGroupwiseScaledSM120(at::Tensor float_workspace_buffer, at::Tensor A, at::Tensor B, at::Tensor SFA, at::Tensor SFB, at::Tensor C, int64_t scale_granularity_m, int64_t scale_granularity_n, int64_t scale_granularity_k, std::string scale_major_mode) { const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device()); auto stream = at::cuda::getCurrentCUDAStream(); // Ensure scales are contiguous // Note: We keep the original shape and let the kernel's layout handle interpretation at::Tensor SFA_contig = SFA.is_contiguous() ? SFA : SFA.contiguous(); at::Tensor SFB_contig = SFB.is_contiguous() ? SFB : SFB.contiguous(); DISPATCH_SCALE_MAJOR_K(scale_major_mode, SCALE_MAJOR_K, [&] { return DISPATCH_PYTORCH_INPUT_OUTPUT_DTYPE( A.scalar_type(), C.scalar_type(), c_type_in, c_type_out, [&] { return DISPATCH_SCALE_GRANULARITY( scale_granularity_m, scale_granularity_n, scale_granularity_k, SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, [&] { using cutlass_t_in = cutlass_dtype_t; using cutlass_t_out = cutlass_dtype_t; // Handle both 2D and 3D tensors (BMM) int m, n, k, l; if (A.dim() == 2) { // 2D case: simple matrix multiplication m = A.size(0); k = A.size(1); n = B.size(0); l = 1; // no batch dimension } else if (A.dim() == 3) { // 3D case: batch matrix multiplication l = A.size(0); // batch size m = A.size(1); // per-batch m dimension k = A.size(2); // per-batch k dimension n = B.size(2); // per-batch n dimension (B is [batch, k, n] column-major) } else { return false; // Unsupported tensor dimension } auto status = flashinfer::gemm::CutlassGroupwiseScaledGEMMSM120< SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, SCALE_MAJOR_K>( static_cast(float_workspace_buffer.data_ptr()), float_workspace_buffer.element_size() * float_workspace_buffer.numel(), static_cast(A.data_ptr()), static_cast(B.data_ptr()), static_cast(SFA_contig.data_ptr()), static_cast(SFB_contig.data_ptr()), static_cast(C.data_ptr()), m, n, k, l, stream); // C is the output (D) return status == cudaSuccess; }); }); }); }