/* * Copyright (c) 2025 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "pytorch_extension_utils.h" using namespace flashinfer; #define DISPATCH_MMA_SM(mma_sm, MMA_SM, ...) \ [&]() -> bool { \ if (mma_sm == 1) { \ constexpr int MMA_SM = 1; \ return __VA_ARGS__(); \ } else if (mma_sm == 2) { \ constexpr int MMA_SM = 2; \ return __VA_ARGS__(); \ } \ TORCH_CHECK(false, "Unsupported MMA SM"); \ return false; \ }() #define DISPATCH_PYTORCH_INPUT_OUTPUT_DTYPE(input_dtype, output_dtype, c_type_in, c_type_out, ...) \ [&]() -> bool { \ return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(output_dtype, c_type_out, [&] { \ return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(input_dtype, c_type_in, \ [&] { return __VA_ARGS__(); }); \ }); \ }() #define DISPATCH_SCALE_GRANULARITY(scale_granularity_m, scale_granularity_n, scale_granularity_k, \ SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, \ ...) \ [&]() -> bool { \ if (scale_granularity_m == 1 && scale_granularity_n == 128 && scale_granularity_k == 128) { \ constexpr int SCALE_GRANULARITY_M = 1; \ constexpr int SCALE_GRANULARITY_N = 128; \ constexpr int SCALE_GRANULARITY_K = 128; \ return __VA_ARGS__(); \ } else if (scale_granularity_m == 128 && scale_granularity_n == 128 && \ scale_granularity_k == 128) { \ constexpr int SCALE_GRANULARITY_M = 128; \ constexpr int SCALE_GRANULARITY_N = 128; \ constexpr int SCALE_GRANULARITY_K = 128; \ return __VA_ARGS__(); \ } \ TORCH_CHECK(false, "Unsupported scale granularity"); \ return false; \ }() #define DISPATCH_SCALE_MAJOR_K(scale_major_mode, SCALE_MAJOR_K, ...) \ [&]() -> bool { \ if (scale_major_mode == "K") { \ constexpr bool SCALE_MAJOR_K = true; \ return __VA_ARGS__(); \ } else if (scale_major_mode == "MN") { \ constexpr bool SCALE_MAJOR_K = false; \ return __VA_ARGS__(); \ } \ TORCH_CHECK(false, "Unsupported Scale Major Mode"); \ return false; \ }() namespace flashinfer { namespace group_gemm { template cudaError_t CutlassFP8GroupwiseScaledGroupGEMMSM100( void* int_buffer, size_t int_buffer_size_in_bytes, void* float_buffer, size_t float_buffer_size_in_bytes, DTypeIn* A, DTypeIn* B, float* SFA, float* SFB, DTypeOut* D, int* m_indptr, int max_m, int n, int k, int num_groups, cudaStream_t stream); } // namespace group_gemm } // namespace flashinfer void CutlassGroupGemmFP8GroupwiseScaledSM100( at::Tensor int_workspace_buffer, at::Tensor float_workspace_buffer, at::Tensor A, at::Tensor B, at::Tensor SFA, at::Tensor SFB, at::Tensor D, at::Tensor m_indptr, int64_t n, int64_t k, int64_t scale_granularity_m, int64_t scale_granularity_n, int64_t scale_granularity_k, std::string scale_major_mode, int64_t mma_sm) { const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device()); auto stream = at::cuda::getCurrentCUDAStream(); int num_groups = m_indptr.size(0) - 1; int max_m = SFA.size(1); DISPATCH_PYTORCH_INPUT_OUTPUT_DTYPE(A.scalar_type(), D.scalar_type(), c_type_in, c_type_out, [&] { return DISPATCH_SCALE_MAJOR_K(scale_major_mode, SCALE_MAJOR_K, [&] { return DISPATCH_MMA_SM(mma_sm, MMA_SM, [&] { return DISPATCH_SCALE_GRANULARITY( scale_granularity_m, scale_granularity_n, scale_granularity_k, SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, [&] { using cutlass_t_in = cutlass_dtype_t; using cutlass_t_out = cutlass_dtype_t; auto status = flashinfer::group_gemm::CutlassFP8GroupwiseScaledGroupGEMMSM100< SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, SCALE_MAJOR_K, MMA_SM>(static_cast(int_workspace_buffer.data_ptr()), int_workspace_buffer.element_size() * int_workspace_buffer.size(0), static_cast(float_workspace_buffer.data_ptr()), float_workspace_buffer.element_size() * float_workspace_buffer.size(0), static_cast(A.data_ptr()), static_cast(B.data_ptr()), static_cast(SFA.data_ptr()), static_cast(SFB.data_ptr()), static_cast(D.data_ptr()), static_cast(m_indptr.data_ptr()), max_m, n, k, num_groups, stream); return status == cudaSuccess; }); }); }); }); }