/* * Copyright (c) 2024 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "pytorch_extension_utils.h" using namespace flashinfer; void rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl) { CHECK_LAST_DIM_CONTIGUOUS_INPUT(input); CHECK_LAST_DIM_CONTIGUOUS_INPUT(weight); auto device = input.device(); CHECK_EQ(weight.device(), device); CHECK_DIM(2, input); // input: (batch_size, hidden_size) CHECK_DIM(1, weight); // weight: (hidden_size) CHECK_EQ(input.size(1), weight.size(0)); unsigned int batch_size = input.size(0); unsigned int hidden_size = input.size(1); CHECK_EQ(output.size(0), batch_size); CHECK_EQ(output.size(1), hidden_size); const c10::cuda::OptionalCUDAGuard device_guard(device); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { cudaError_t status = norm::RMSNorm( static_cast(input.data_ptr()), static_cast(weight.data_ptr()), static_cast(output.data_ptr()), batch_size, hidden_size, input.stride(0), output.stride(0), eps, enable_pdl, stream); TORCH_CHECK(status == cudaSuccess, "RMSNorm failed with error code " + std::string(cudaGetErrorString(status))); return true; }); } void fused_add_rmsnorm(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, bool enable_pdl) { CHECK_LAST_DIM_CONTIGUOUS_INPUT(input); CHECK_LAST_DIM_CONTIGUOUS_INPUT(residual); CHECK_LAST_DIM_CONTIGUOUS_INPUT(weight); auto device = input.device(); CHECK_EQ(residual.device(), device); CHECK_EQ(weight.device(), device); CHECK_DIM(2, input); // input: (batch_size, hidden_size) CHECK_DIM(2, residual); // residual: (batch_size, hidden_size) CHECK_DIM(1, weight); // weight: (hidden_size) CHECK_EQ(input.size(0), residual.size(0)); CHECK_EQ(input.size(1), residual.size(1)); CHECK_EQ(input.size(1), weight.size(0)); unsigned int batch_size = input.size(0); unsigned int hidden_size = input.size(1); const c10::cuda::OptionalCUDAGuard device_guard(device); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { cudaError_t status = norm::FusedAddRMSNorm( static_cast(input.data_ptr()), static_cast(residual.data_ptr()), static_cast(weight.data_ptr()), batch_size, hidden_size, input.stride(0), residual.stride(0), eps, enable_pdl, stream); TORCH_CHECK(status == cudaSuccess, "FusedAddRMSNorm failed with error code " + std::string(cudaGetErrorString(status))); return true; }); } void gemma_rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl) { CHECK_LAST_DIM_CONTIGUOUS_INPUT(input); CHECK_LAST_DIM_CONTIGUOUS_INPUT(weight); auto device = input.device(); CHECK_EQ(weight.device(), device); CHECK_DIM(2, input); // input: (batch_size, hidden_size) CHECK_DIM(1, weight); // weight: (hidden_size) CHECK_EQ(input.size(1), weight.size(0)); unsigned int batch_size = input.size(0); unsigned int hidden_size = input.size(1); CHECK_EQ(output.size(0), batch_size); CHECK_EQ(output.size(1), hidden_size); const c10::cuda::OptionalCUDAGuard device_guard(device); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { cudaError_t status = norm::GemmaRMSNorm( static_cast(input.data_ptr()), static_cast(weight.data_ptr()), static_cast(output.data_ptr()), batch_size, hidden_size, input.stride(0), output.stride(0), eps, enable_pdl, stream); TORCH_CHECK(status == cudaSuccess, "GemmaRMSNorm failed with error code " + std::string(cudaGetErrorString(status))); return true; }); } void gemma_fused_add_rmsnorm(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, bool enable_pdl) { CHECK_LAST_DIM_CONTIGUOUS_INPUT(input); CHECK_LAST_DIM_CONTIGUOUS_INPUT(residual); CHECK_LAST_DIM_CONTIGUOUS_INPUT(weight); auto device = input.device(); CHECK_EQ(residual.device(), device); CHECK_EQ(weight.device(), device); CHECK_DIM(2, input); // input: (batch_size, hidden_size) CHECK_DIM(2, residual); // residual: (batch_size, hidden_size) CHECK_DIM(1, weight); // weight: (hidden_size) CHECK_EQ(input.size(0), residual.size(0)); CHECK_EQ(input.size(1), residual.size(1)); CHECK_EQ(input.size(1), weight.size(0)); unsigned int batch_size = input.size(0); unsigned int hidden_size = input.size(1); const c10::cuda::OptionalCUDAGuard device_guard(device); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { cudaError_t status = norm::GemmaFusedAddRMSNorm( static_cast(input.data_ptr()), static_cast(residual.data_ptr()), static_cast(weight.data_ptr()), batch_size, hidden_size, input.stride(0), residual.stride(0), eps, enable_pdl, stream); TORCH_CHECK(status == cudaSuccess, "GemmaFusedAddRMSNorm failed with error code " + std::string(cudaGetErrorString(status))); return true; }); }