/*************************************************************************************************** * Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief An universal device layer for cutlass 3.x-style kernels. */ #pragma once // common #include "cutlass/cutlass.h" #include "cutlass/device_kernel.h" #if !defined(__CUDACC_RTC__) #include "cutlass/cluster_launch.hpp" #include "cutlass/trace.h" #endif // !defined(__CUDACC_RTC__) //////////////////////////////////////////////////////////////////////////////// namespace cutlass::fmha::device { //////////////////////////////////////////////////////////////////////////////// ////////////////////////////// CUTLASS 3.x API ///////////////////////////////// //////////////////////////////////////////////////////////////////////////////// template class FMHA { public: using Kernel = Kernel_; static int const kThreadCount = Kernel::MaxThreadsPerBlock; /// Argument structure: User API using Arguments = typename Kernel::Arguments; /// Argument structure: Kernel API using Params = typename Kernel::Params; private: /// Kernel API parameters object Params params_; bool is_initialized(bool set = false) { static bool initialized = false; if (set) initialized = true; return initialized; } public: /// Access the Params structure Params const& params() const { return params_; } /// Determines whether the GEMM can execute the given problem. static Status can_implement(Arguments const& args) { if (Kernel::can_implement(args)) { return Status::kSuccess; } else { return Status::kInvalid; } } /// Gets the workspace size static size_t get_workspace_size(Arguments const& args) { size_t workspace_bytes = 0; workspace_bytes += Kernel::get_workspace_size(args); return workspace_bytes; } /// Computes the grid shape static dim3 get_grid_shape(Params const& params) { return Kernel::get_grid_shape(params); } /// Computes the maximum number of active blocks per multiprocessor static int maximum_active_blocks(int /* smem_capacity */ = -1) { CUTLASS_TRACE_HOST("FMHA::maximum_active_blocks()"); int max_active_blocks = -1; int smem_size = Kernel::SharedStorageSize; // first, account for dynamic smem capacity if needed cudaError_t result; if (smem_size >= (48 << 10)) { CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size); result = cudaFuncSetAttribute(device_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); if (cudaSuccess != result) { result = cudaGetLastError(); // to clear the error bit CUTLASS_TRACE_HOST( " cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result)); return -1; } } // query occupancy after setting smem size result = cudaOccupancyMaxActiveBlocksPerMultiprocessor( &max_active_blocks, device_kernel, Kernel::MaxThreadsPerBlock, smem_size); if (cudaSuccess != result) { result = cudaGetLastError(); // to clear the error bit CUTLASS_TRACE_HOST(" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error: " << cudaGetErrorString(result)); return -1; } CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks); return max_active_blocks; } /// Initializes GEMM state from arguments. Status initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { CUTLASS_TRACE_HOST("FMHA::initialize() - workspace " << workspace << ", stream: " << (stream ? "non-null" : "null")); // Initialize the workspace Status status = Kernel::initialize_workspace(args, workspace, stream); if (status != Status::kSuccess) { return status; } // Initialize the Params structure params_ = Kernel::to_underlying_arguments(args, workspace); if (is_initialized()) return Status::kSuccess; // account for dynamic smem capacity if needed int smem_size = Kernel::SharedStorageSize; if (smem_size >= (48 << 10)) { CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size); cudaError_t result = cudaFuncSetAttribute( device_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); if (cudaSuccess != result) { result = cudaGetLastError(); // to clear the error bit CUTLASS_TRACE_HOST( " cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result)); return Status::kErrorInternal; } } is_initialized(true); return Status::kSuccess; } /// Update API is preserved in 3.0, but does not guarantee a lightweight update of params. Status update(Arguments const& args, void* workspace = nullptr) { CUTLASS_TRACE_HOST("FMHA()::update() - workspace: " << workspace); size_t workspace_bytes = get_workspace_size(args); if (workspace_bytes > 0 && nullptr == workspace) { return Status::kErrorWorkspaceNull; } params_ = Kernel::to_underlying_arguments(args, workspace); return Status::kSuccess; } /// Primary run() entry point API that is static allowing users to create and manage their own /// params. Supplied params struct must be construct by calling Kernel::to_underling_arguments() static Status run(Params& params, cudaStream_t stream = nullptr, bool launch_with_pdl = true) { CUTLASS_TRACE_HOST("FMHA::run()"); dim3 const block = Kernel::get_block_shape(); dim3 const grid = get_grid_shape(params); // configure smem size and carveout int smem_size = Kernel::SharedStorageSize; Status launch_result; // Use extended launch API only for mainloops that use it if constexpr (Kernel::ArchTag::kMinComputeCapability >= 90) { dim3 cluster(cute::size<0>(typename Kernel::ClusterShape{}), cute::size<1>(typename Kernel::ClusterShape{}), cute::size<2>(typename Kernel::ClusterShape{})); void const* kernel = (void const*)device_kernel; void* kernel_params[] = {¶ms}; launch_result = ClusterLauncher::launch(grid, cluster, block, smem_size, stream, kernel, kernel_params, launch_with_pdl); } else { launch_result = Status::kSuccess; device_kernel<<>>(params); } cudaError_t result = cudaGetLastError(); if (cudaSuccess == result && Status::kSuccess == launch_result) { return Status::kSuccess; } else { CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result); return Status::kErrorInternal; } } // // Non-static launch overloads that first create and set the internal params struct of this kernel // handle. // /// Launches the kernel after first constructing Params internal state from supplied arguments. Status run(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { Status status = initialize(args, workspace, stream); if (Status::kSuccess == status) { status = run(params_, stream); } return status; } /// Launches the kernel after first constructing Params internal state from supplied arguments. Status operator()(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { return run(args, workspace, stream); } /// Overload that allows a user to re-launch the same kernel without updating internal params /// struct. Status run(cudaStream_t stream = nullptr) { return run(params_, stream); } /// Overload that allows a user to re-launch the same kernel without updating internal params /// struct. Status operator()(cudaStream_t stream = nullptr) { return run(params_, stream); } }; //////////////////////////////////////////////////////////////////////////////// } // namespace cutlass::fmha::device ////////////////////////////////////////////////////////////////////////////////