/* * Copyright (c) 2025 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "../../utils.cuh" namespace flashinfer { union alignas(8) CostIndex { struct { int bucket_idx; float cost; }; long long packed; }; __device__ __forceinline__ CostIndex min(CostIndex a, CostIndex b) { return a.cost < b.cost || (a.cost == b.cost && a.bucket_idx < b.bucket_idx) ? a : b; } __device__ __forceinline__ CostIndex get_min_cost_index(CostIndex* warp_min_cost, CostIndex cost_index, int num_buckets) { #pragma unroll for (int offset = 16; offset > 0; offset >>= 1) { CostIndex other; other.packed = __shfl_xor_sync(0xffffffff, cost_index.packed, offset); cost_index = min(cost_index, other); } if (static_cast(threadIdx.x) % 32 == 0) { warp_min_cost[static_cast(threadIdx.x) / 32] = cost_index; } __syncthreads(); if (static_cast(threadIdx.x) < 32) { cost_index = static_cast(threadIdx.x) * 32 < num_buckets ? warp_min_cost[threadIdx.x] : CostIndex{static_cast(threadIdx.x) * 32, cuda::std::numeric_limits::infinity()}; #pragma unroll for (int offset = 16; offset > 0; offset >>= 1) { CostIndex other; other.packed = __shfl_xor_sync(0xffffffff, cost_index.packed, offset); cost_index = min(cost_index, other); } if (static_cast(threadIdx.x) == 0) { warp_min_cost[0] = cost_index; } } __syncthreads(); return warp_min_cost[0]; } __global__ void plan_kernel(int* qo_segment_offsets, int* kv_segment_offsets, int* qo_lens, int* kv_lens, int* work_indptr, int* qo_tile_indices, int* head_indices, int* batch_indices, int qo_tile_size, int batch_size, int num_heads, int num_buckets, bool causal) { __shared__ CostIndex warp_min_cost[32]; constexpr int MAX_BUCKET_SIZE = 256; using BlockScan = cub::BlockScan; __shared__ typename BlockScan::TempStorage temp_storage; // first round, calculate the work count for each bucket CostIndex thread_local_cost_index = {static_cast(threadIdx.x), 0.f}; int thread_local_work_counter = 0; if (static_cast(threadIdx.x) >= num_buckets) { thread_local_cost_index.cost = cuda::std::numeric_limits::infinity(); } for (int head_idx = 0; head_idx < num_heads; ++head_idx) { for (int batch_idx = 0; batch_idx < batch_size; ++batch_idx) { int qo_len = qo_lens ? qo_lens[batch_idx] : qo_segment_offsets[batch_idx + 1] - qo_segment_offsets[batch_idx]; int kv_len = kv_lens ? kv_lens[batch_idx] : kv_segment_offsets[batch_idx + 1] - kv_segment_offsets[batch_idx]; int num_qo_tiles = ceil_div(qo_len, qo_tile_size); for (int qo_tile_idx = num_qo_tiles - 1; qo_tile_idx >= 0; --qo_tile_idx) { auto min_cost_index = get_min_cost_index(warp_min_cost, thread_local_cost_index, num_buckets); int bucket_idx = min_cost_index.bucket_idx; float cost = min_cost_index.cost; if (bucket_idx == threadIdx.x) { thread_local_cost_index.cost += causal ? kv_len - (num_qo_tiles - qo_tile_idx - 1) * qo_tile_size : kv_len; thread_local_work_counter++; } } } } __syncthreads(); // compute exclusive prefix sum of int thread_local_work_indptr = 0; BlockScan(temp_storage).ExclusiveSum(thread_local_work_counter, thread_local_work_indptr); __syncthreads(); if (static_cast(threadIdx.x) < num_buckets) { work_indptr[threadIdx.x] = thread_local_work_indptr; } if (static_cast(threadIdx.x) + 1 == num_buckets) { work_indptr[num_buckets] = thread_local_work_indptr + thread_local_work_counter; } // second round, write qo_tile_idx, head_idx, batch_idx to the output thread_local_work_counter = 0; if (static_cast(threadIdx.x) >= num_buckets) { thread_local_cost_index.cost = cuda::std::numeric_limits::infinity(); } else { thread_local_cost_index.cost = 0.f; } for (int head_idx = 0; head_idx < num_heads; ++head_idx) { for (int batch_idx = 0; batch_idx < batch_size; ++batch_idx) { int qo_len = qo_lens ? qo_lens[batch_idx] : qo_segment_offsets[batch_idx + 1] - qo_segment_offsets[batch_idx]; int kv_len = kv_lens ? kv_lens[batch_idx] : kv_segment_offsets[batch_idx + 1] - kv_segment_offsets[batch_idx]; int num_qo_tiles = ceil_div(qo_len, qo_tile_size); for (int qo_tile_idx = num_qo_tiles - 1; qo_tile_idx >= 0; --qo_tile_idx) { auto min_cost_index = get_min_cost_index(warp_min_cost, thread_local_cost_index, num_buckets); int bucket_idx = min_cost_index.bucket_idx; float cost = min_cost_index.cost; if (bucket_idx == threadIdx.x) { thread_local_cost_index.cost += causal ? kv_len - (num_qo_tiles - qo_tile_idx - 1) * qo_tile_size : kv_len; qo_tile_indices[thread_local_work_indptr + thread_local_work_counter] = qo_tile_idx; head_indices[thread_local_work_indptr + thread_local_work_counter] = head_idx; batch_indices[thread_local_work_indptr + thread_local_work_counter] = batch_idx; thread_local_work_counter++; } } } } #if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) asm volatile("griddepcontrol.launch_dependents;"); #endif } cudaError_t plan_kernel_wrapper(int* qo_segment_offsets, int* kv_segment_offsets, int* qo_lens, int* kv_lens, int* work_indptr, int* qo_tile_indices, int* head_indices, int* batch_indices, int qo_tile_size, int batch_size, int num_heads, int num_buckets, bool causal, bool enable_pdl, cudaStream_t stream) { if (enable_pdl) { cudaLaunchConfig_t config; config.gridDim = 1; config.blockDim = 256; config.dynamicSmemBytes = 0; config.stream = stream; cudaLaunchAttribute attrs[1]; attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attrs[0].val.programmaticStreamSerializationAllowed = true; config.numAttrs = 1; config.attrs = attrs; FLASHINFER_CUDA_CALL( cudaLaunchKernelEx(&config, plan_kernel, qo_segment_offsets, kv_segment_offsets, qo_lens, kv_lens, work_indptr, qo_tile_indices, head_indices, batch_indices, qo_tile_size, batch_size, num_heads, num_buckets, causal)); } else { plan_kernel<<<1, 256, 0, stream>>>(qo_segment_offsets, kv_segment_offsets, qo_lens, kv_lens, work_indptr, qo_tile_indices, head_indices, batch_indices, qo_tile_size, batch_size, num_heads, num_buckets, causal); FLASHINFER_CUDA_CALL(cudaGetLastError()); } return cudaSuccess; } } // namespace flashinfer