/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "../exception.h" #include "../logging.h" #include "../utils.cuh" #include "../vec_dtypes.cuh" namespace flashinfer { namespace trtllm_allreduce { constexpr size_t WARP_SIZE = 32; constexpr size_t MAX_ALL_REDUCE_BLOCKS = 24; constexpr size_t MAX_RANKS_PER_NODE = 16; constexpr size_t DEFAULT_BLOCK_SIZE = 512; constexpr size_t NUM_POINTERS_PER_RANK = 7; namespace details { static constexpr int kBytesPerAccess = 16; static constexpr int kWarpSize = 32; static constexpr int kMaxCtaSize = 1024; static constexpr int kClusterMaxSize = 8; static constexpr int kLamportTokenNumThreshold = 16; static constexpr int kLamportHiddenSizeThreshold = 256; } // namespace details enum class AllReduceStrategyType : int8_t { NCCL = 0, MIN_LATENCY = 1, UB = 2, AUTO = 3, ONESHOT = 4, TWOSHOT = 5, LOWPRECISION = 6, }; enum class AllReduceStrategyConfig : int8_t { USE_MEMCPY = 1 << 0, PUSH_MODE = 1 << 1, }; ////////////////////// enum class AllReduceFusionOp : int8_t { NONE = 0, RESIDUAL_RMS_NORM = 1, LAST_PROCESS_FOR_UB = 2, RESIDUAL_RMS_PREPOST_NORM = 3, RESIDUAL_RMS_NORM_QUANT_FP8 = 4, RESIDUAL_RMS_NORM_QUANT_NVFP4 = 5, RESIDUAL_RMS_NORM_OUT_QUANT_FP8 = 6, RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4 = 7, MOE_ALLREDUCE_RESIDUAL_RMS_NORM = 8, MOE_FINALIZE_ALLREDUCE_RESIDUAL_RMS_NORM = 9, }; template bool is_lamport_supported(int token_num, int hidden_size) { if (!std::is_same_v && !std::is_same_v) { return false; } if (token_num > details::kLamportTokenNumThreshold) { return false; } if (hidden_size < details::kLamportHiddenSizeThreshold) { return false; } return true; } struct AllReduceFusionParams { AllReduceFusionParams() : bias_buffer(nullptr), residual_buffer(nullptr), weight_buffer(nullptr), weight_buffer_pre_residual_norm(nullptr), intermediate_buffer(nullptr) {} // gemm bias void const* bias_buffer; // residuial add void const* residual_buffer; // rms norm int hidden_size; // equal to normalized_shape void const* weight_buffer; // norm elem-wise affine gamma void const* weight_buffer_pre_residual_norm; // for gemma norm before residual float eps; // new residual void* intermediate_buffer; void* lamport_peer_comm_buffer_ptrs[MAX_RANKS_PER_NODE * 3]; }; template struct AllReduceParams { size_t elts_total; size_t elts_per_rank; size_t elts_per_block; size_t rank_offset; size_t ranks_per_node; size_t local_rank; uint32_t barrier_flag; uint32_t* peer_barrier_ptrs_in[MAX_RANKS_PER_NODE]; uint32_t* peer_barrier_ptrs_out[MAX_RANKS_PER_NODE]; void* peer_comm_buffer_ptrs[MAX_RANKS_PER_NODE]; void* local_output_buffer_ptr; void const* local_input_buffer_ptr; AllReduceFusionParams fusion_params; static AllReduceParams deserialize(int64_t* buffer, size_t tpSize, size_t tpRank, int token_num, int hidden_size, AllReduceFusionOp op) { void* const* buffer_ptrs = reinterpret_cast(buffer); int flag_offset; if (op == AllReduceFusionOp::RESIDUAL_RMS_NORM && is_lamport_supported(token_num, hidden_size)) { flag_offset = 0; } else { flag_offset = 1; } auto const flag_ptr = &buffer[NUM_POINTERS_PER_RANK * tpSize + flag_offset]; // cannot use 0 since 0 represents released state for barrier *flag_ptr += 1; uint32_t flag_value = *flag_ptr; AllReduceParams params; // Even plugins use ping buffers, odd plugins use pong. // That way, we don't need to wait for other GPUs to be done // before copying input tensor to workspace. auto const buffer_offset = (flag_value % 2 == 0) ? 0 : tpSize; for (int i = 0; i < tpSize; ++i) { params.peer_comm_buffer_ptrs[i] = buffer_ptrs[buffer_offset + i]; } for (int i = 0; i < tpSize; ++i) { params.peer_barrier_ptrs_in[i] = reinterpret_cast(buffer_ptrs[2 * tpSize + i]); } for (int i = 0; i < tpSize; ++i) { params.peer_barrier_ptrs_out[i] = reinterpret_cast(buffer_ptrs[3 * tpSize + i]); } params.barrier_flag = flag_value; params.ranks_per_node = tpSize; params.local_rank = tpRank; return params; } }; //////////////////////////////////////////////////////////////////////////////////////////////////// template struct neg_zero { static constexpr T value = -T(0); }; template <> struct neg_zero { static constexpr unsigned short neg_zero_bits = 0x8000U; static constexpr __half value = __half_raw{neg_zero_bits}; }; template <> struct neg_zero { static constexpr unsigned short neg_zero_bits = 0x8000U; static constexpr __nv_bfloat16 value = __nv_bfloat16_raw{neg_zero_bits}; }; template <> struct neg_zero { static constexpr unsigned int neg_zero_bits = 0x80000000U; static constexpr float value = -0.0f; }; template __device__ static constexpr T neg_zero_v = neg_zero::value; template __device__ bool is_negative_zero(T) { return false; } // float specialization template <> __device__ bool is_negative_zero(float x) { return (__float_as_int(x) == 0x80000000); } // double specialization template <> __device__ bool is_negative_zero(double x) { return (__double_as_longlong(x) == 0x8000000000000000ULL); } // __half specialization template <> __device__ bool is_negative_zero<__half>(__half x) { return (__half_as_ushort(x) == 0x8000); } // __nv_bfloat16 specialization template <> __device__ bool is_negative_zero<__nv_bfloat16>(__nv_bfloat16 x) { return (__bfloat16_as_ushort(x) == 0x8000); } template __device__ __forceinline__ bool has_neg_zero(const vec_t& vec) { #pragma unroll for (int i = 0; i < VEC_SIZE; ++i) { if (is_negative_zero(vec[i])) { return true; } } return false; } template __device__ __forceinline__ void remove_neg_zero(vec_t& vec) { #pragma unroll for (int i = 0; i < VEC_SIZE; ++i) { vec[i] = (is_negative_zero(vec[i])) ? static_cast(0.f) : vec[i]; } } template __device__ __forceinline__ void set_neg_zero(T* addr) { vec_t val; val.fill(neg_zero_v); val.store_global_volatile(addr); } static inline __device__ void st_flag_release(uint32_t const& flag, uint32_t* flag_addr) { #if __CUDA_ARCH__ >= 700 asm volatile("st.global.release.sys.b32 [%1], %0;" ::"r"(flag), "l"(flag_addr)); #else __threadfence_system(); asm volatile("st.global.volatile.b32 [%1], %0;" ::"r"(flag), "l"(flag_addr)); #endif } //////////////////////////////////////////////////////////////////////////////////////////////////// static inline __device__ uint32_t ld_flag_acquire(uint32_t* flag_addr) { uint32_t flag; #if __CUDA_ARCH__ >= 700 asm volatile("ld.global.acquire.sys.b32 %0, [%1];" : "=r"(flag) : "l"(flag_addr)); #else asm volatile("ld.global.volatile.b32 %0, [%1];" : "=r"(flag) : "l"(flag_addr)); #endif return flag; } template __device__ __forceinline__ vec_t vec_add(const vec_t& a, const vec_t& b) { vec_t ret; #pragma unroll for (int i = 0; i < VEC_SIZE; ++i) { ret[i] = static_cast(a[i]) + static_cast(b[i]); } return ret; } //////////////////////////////////////////////////////////////////////////////////////////////////// __inline__ __device__ void multi_gpu_barrier(uint32_t** signals, uint32_t const flag, size_t const local_rank, size_t const world_size, int const tidx, int const bidx) { // After this function, at least one block in each GPU has reached the barrier if (tidx < world_size) { // we can think of signals having the shape [world_size, world_size] // Dimension 0 is the "listening" dimension, dimension 1 is "emitting" dimension // Block 0 broadcasts its flag (local_rank on emitting dimension) to all receivers size_t offset = (flag % 2) ? world_size : 0; if (bidx == 0) { st_flag_release(flag, signals[tidx] + offset + local_rank); } // All blocks check that corresponding block 0 on other GPUs have set the flag // No deadlock because block #0 is always the first block started uint32_t* peer_barrier_d = signals[local_rank] + offset + tidx; while (ld_flag_acquire(peer_barrier_d) != flag) { } } __syncthreads(); } __inline__ __device__ void block_barrier(uint32_t** signals, uint32_t const flag, size_t const local_rank, size_t const world_size, int const tidx, int const bidx, int const grid_size) { // After this function, the block of id == bidx of each GPU has reached the barrier if (tidx < world_size) { // we can think of signals having the shape [world_size, 2, num_blocks, world_size] // (+ an offset on dim 2 to account for flags used in multi_gpu_barrier) // Dimension 0 is the "listening" dimension, dimension 3 is "emitting" dimension // Block broadcast its flag (local_rank on emitting dimension) to all receivers uint32_t flag_block_offset = world_size + bidx * world_size; if (flag % 2 == 1) { flag_block_offset += (grid_size + 1) * world_size; } st_flag_release(flag, signals[tidx] + flag_block_offset + local_rank); // Blocks check that corresponding blocks on other GPUs have also set the flag uint32_t* peer_barrier_d = signals[local_rank] + flag_block_offset + tidx; while (ld_flag_acquire(peer_barrier_d) != flag) { } } __syncthreads(); } namespace reduce_fusion { inline __device__ float warp_reduce_sum(float val) { val += __shfl_xor_sync(~0, val, 16); val += __shfl_xor_sync(~0, val, 8); val += __shfl_xor_sync(~0, val, 4); val += __shfl_xor_sync(~0, val, 2); val += __shfl_xor_sync(~0, val, 1); return val; } inline __device__ float block_reduce_sum(float val) { __shared__ float smem[details::kWarpSize]; int lane_id = threadIdx.x % details::kWarpSize, warp_id = threadIdx.x / details::kWarpSize, warp_num = blockDim.x / details::kWarpSize; val = warp_reduce_sum(val); if (lane_id == 0) { smem[warp_id] = val; } __syncthreads(); val = lane_id < warp_num ? smem[lane_id] : 0.f; val = warp_reduce_sum(val); return val; } template inline __device__ float accumulate(float acc, vec_t& vec) { #pragma unroll for (int i = 0; i < VEC_SIZE; ++i) { float v = static_cast(vec[i]); acc += v * v; } return acc; } template inline __device__ vec_t rms_norm(float denom, vec_t& vec, vec_t& weight) { vec_t ret; #pragma unroll for (int i = 0; i < VEC_SIZE; ++i) { float v1 = static_cast(vec[i]); if constexpr (Affine) { float v2 = static_cast(weight[i]); ret[i] = static_cast(v1 * denom * v2); } else { ret[i] = static_cast(v1 * denom); } } return ret; } template __global__ void rms_norm_kernel(AllReduceParams params) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); extern __shared__ uint8_t smem_ptr[]; T* smem = reinterpret_cast(smem_ptr); int bid = blockIdx.x, tid = threadIdx.x; T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); int block_offset = bid * params.fusion_params.hidden_size; int thread_offset = tid * VEC_SIZE; if constexpr (Residual) { residual_buffer += block_offset; } local_final_output_buffer += block_offset; intermediate_buffer += block_offset; #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaGridDependencySynchronize(); #endif vec_t inter_vec, weight_vec; float acc = 0.f; for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { inter_vec.load(intermediate_buffer + offset); if constexpr (Bias) { vec_t bias_vec; bias_vec.load(bias_buffer + offset); inter_vec = vec_add(inter_vec, bias_vec); } if constexpr (Residual) { vec_t residual_vec; residual_vec.load(residual_buffer + offset); inter_vec = vec_add(inter_vec, residual_vec); inter_vec.store(intermediate_buffer + offset); } acc = accumulate(acc, inter_vec); if constexpr (UseSmem) { inter_vec.store(&smem[offset]); } } acc = block_reduce_sum(acc); float denom = rsqrtf(acc / params.fusion_params.hidden_size + params.fusion_params.eps); for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { if constexpr (UseSmem) { inter_vec.load(&smem[offset]); } if constexpr (Affine) { weight_vec.load(weight_buffer + offset); } inter_vec = rms_norm(denom, inter_vec, weight_vec); inter_vec.store(&local_final_output_buffer[offset]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template __global__ void rms_pre_post_norm_kernel( AllReduceParams params) // for gemma2 pre residual + post residual norm { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); int bid = blockIdx.x, tid = threadIdx.x; T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T const* weight_buffer_pre_residual_norm = reinterpret_cast(params.fusion_params.weight_buffer_pre_residual_norm); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); int block_offset = bid * params.fusion_params.hidden_size; int thread_offset = tid * VEC_SIZE; if constexpr (Residual) { residual_buffer += block_offset; } local_final_output_buffer += block_offset; intermediate_buffer += block_offset; #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaGridDependencySynchronize(); #endif vec_t inter_vec, weight_vec, weight_vec_pre_residual_norm, bias_vec; float acc = 0.f; float acc_pre_residual_norm = 0.f; for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { inter_vec.load(intermediate_buffer + offset); if constexpr (Bias) { bias_vec.load(bias_buffer + offset); } if constexpr (Bias) { inter_vec = vec_add(inter_vec, bias_vec); } // pre-residual norm. acc_pre_residual_norm = accumulate(acc_pre_residual_norm, inter_vec); acc_pre_residual_norm = block_reduce_sum(acc_pre_residual_norm); float denom_pre_residual_norm = rsqrtf(acc_pre_residual_norm / params.fusion_params.hidden_size + params.fusion_params.eps); if constexpr (Affine) { weight_vec_pre_residual_norm.load(weight_buffer_pre_residual_norm + thread_offset); } inter_vec = rms_norm(denom_pre_residual_norm, inter_vec, weight_vec_pre_residual_norm); if constexpr (Residual) { vec_t residual_vec; residual_vec.load(residual_buffer + offset); inter_vec = vec_add(inter_vec, residual_vec); inter_vec.store(intermediate_buffer + offset); } acc = accumulate(acc, inter_vec); } acc = block_reduce_sum(acc); float denom = rsqrtf(acc / params.fusion_params.hidden_size + params.fusion_params.eps); for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { if constexpr (Affine) { weight_vec.load(weight_buffer + offset); } inter_vec = rms_norm(denom, inter_vec, weight_vec); inter_vec.store(&local_final_output_buffer[offset]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template cudaError_t rms_norm_kernel_launcher(AllReduceParams& params, AllReduceFusionOp fusionOp, bool launch_with_pdl, cudaStream_t stream) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); FLASHINFER_CHECK(params.fusion_params.hidden_size % VEC_SIZE == 0, "hidden_size must be a multiple of ", VEC_SIZE); if (fusionOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM) { FLASHINFER_CHECK(params.fusion_params.hidden_size <= 8192, "hidden_size must be less than or equal to 8192"); } int need_threads = params.fusion_params.hidden_size / VEC_SIZE; int cta_size; if (need_threads <= details::kMaxCtaSize) { cta_size = (need_threads + details::kWarpSize - 1) / details::kWarpSize * details::kWarpSize; } else { cta_size = details::kMaxCtaSize; } int cta_num = params.elts_total / params.fusion_params.hidden_size; int smem_size = 0; if (cta_size * details::kBytesPerAccess / sizeof(T) < params.fusion_params.hidden_size) { smem_size = params.fusion_params.hidden_size * sizeof(T); cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; if (fusionOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, rms_norm_kernel, params)); } else { // AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, rms_pre_post_norm_kernel, params)); } } else { cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; if (fusionOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, rms_norm_kernel, params)); } else { // AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, rms_pre_post_norm_kernel, params)); } } return cudaSuccess; } template struct Reducer; template struct Reducer { constexpr static uint32_t VEC_SIZE = 16 / sizeof(T); static __device__ __forceinline__ vec_t allreduce(AllReduceParams& params, int global_offset) { int ping = params.barrier_flag % 3; int pong = (params.barrier_flag + 2) % 3; T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T* local_shared_buffer = reinterpret_cast( params.fusion_params .lamport_peer_comm_buffer_ptrs[params.local_rank + ping * MAX_RANKS_PER_NODE]); T* local_clean_buffer = reinterpret_cast( params.fusion_params .lamport_peer_comm_buffer_ptrs[params.local_rank + pong * MAX_RANKS_PER_NODE]); local_input_buffer += global_offset; local_shared_buffer += global_offset; local_clean_buffer += global_offset; T* buffers[RanksPerNode]; #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; buffers[ii] = reinterpret_cast( params.fusion_params .lamport_peer_comm_buffer_ptrs[rank + ping * MAX_RANKS_PER_NODE]) + global_offset + params.local_rank * params.elts_total; } vec_t sum_vec, val; val.load(local_input_buffer); #pragma unroll for (int ii = 1; ii < RanksPerNode; ++ii) { val.store_global_volatile(buffers[ii]); } sum_vec = val; #pragma unroll for (int ii = 1; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; set_neg_zero(local_clean_buffer + rank * params.elts_total); } vec_t vals[RanksPerNode - 1]; bool done = false; while (!done) { done = true; #pragma unroll for (int ii = 1; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; vals[ii - 1].load_global_volatile(local_shared_buffer + rank * params.elts_total); } #pragma unroll for (int ii = 0; ii < RanksPerNode - 1; ii++) { done &= !has_neg_zero(vals[ii]); } } #pragma unroll for (int ii = 1; ii < RanksPerNode; ++ii) { sum_vec = vec_add(sum_vec, vals[ii - 1]); } return sum_vec; } }; template struct Reducer { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); static __device__ __forceinline__ vec_t allreduce(AllReduceParams& params, int global_offset) { int ping = params.barrier_flag % 3; int pong = (params.barrier_flag + 2) % 3; T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T* local_shared_buffer = reinterpret_cast( params.fusion_params .lamport_peer_comm_buffer_ptrs[params.local_rank + ping * MAX_RANKS_PER_NODE]); T* local_clean_buffer = reinterpret_cast( params.fusion_params .lamport_peer_comm_buffer_ptrs[params.local_rank + pong * MAX_RANKS_PER_NODE]); local_input_buffer += global_offset; local_shared_buffer += global_offset; local_clean_buffer += global_offset; T* buffers[RanksPerNode]; #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; buffers[ii] = reinterpret_cast( params.fusion_params .lamport_peer_comm_buffer_ptrs[rank + ping * MAX_RANKS_PER_NODE]) + global_offset; } vec_t sum_vec, val; val.load(local_input_buffer); val.store_global_volatile(reinterpret_cast(local_shared_buffer)); sum_vec = val; #pragma unroll for (int ii = 1; ii < RanksPerNode; ++ii) { do { val.load_global_volatile(reinterpret_cast(buffers[ii])); } while (has_neg_zero(val)); sum_vec = vec_add(sum_vec, val); } set_neg_zero(local_clean_buffer); return sum_vec; } }; template __global__ void lamport_style_one_shot_all_reduce_norm_kernel(AllReduceParams params) { #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) namespace cg = cooperative_groups; static_assert(RanksPerNode <= MAX_RANKS_PER_NODE); static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); cg::cluster_group cluster = cg::this_cluster(); __shared__ float cluster_acc, cluster_acc_sum; int bid = blockIdx.x, tid = threadIdx.x; int cluster_id = bid / ClusterSize, cluster_block_rank = bid % ClusterSize; int token_id = cluster_id; int cluster_offset = token_id * params.fusion_params.hidden_size; int block_offset = cluster_block_rank * params.fusion_params.hidden_size / ClusterSize; int thread_offset = tid * VEC_SIZE; int inner_token_offset = block_offset + thread_offset; int global_offset = cluster_offset + inner_token_offset; T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); local_final_output_buffer += global_offset; intermediate_buffer += global_offset; residual_buffer += global_offset; bias_buffer += inner_token_offset; weight_buffer += inner_token_offset; vec_t weight_vec, bias_vec, residual_vec; residual_vec.load(residual_buffer); if constexpr (Bias) { bias_vec.load(bias_buffer); } if constexpr (Affine) { weight_vec.load(weight_buffer); } cudaGridDependencySynchronize(); float acc = 0.f; vec_t sum_vec; sum_vec = Reducer::allreduce(params, global_offset); if constexpr (Bias) { sum_vec = vec_add(sum_vec, bias_vec); } sum_vec = vec_add(sum_vec, residual_vec); sum_vec.store(intermediate_buffer); acc = accumulate(acc, sum_vec); acc = block_reduce_sum(acc); if (ClusterSize > 1) { if (threadIdx.x == 0) { cluster_acc = acc; } cluster.sync(); if (threadIdx.x == 0) { acc = 0.f; #pragma unroll for (int ii = 0; ii < ClusterSize; ++ii) { acc += *cluster.map_shared_rank(&cluster_acc, ii); } cluster_acc_sum = acc; } __syncthreads(); acc = cluster_acc_sum; cluster.sync(); } float denom = rsqrtf(acc / params.fusion_params.hidden_size + params.fusion_params.eps); sum_vec = rms_norm(denom, sum_vec, weight_vec); sum_vec.store(local_final_output_buffer); cudaTriggerProgrammaticLaunchCompletion(); #endif } int heuristic_min_warp_number(int tp_size, int hidden_size) { if (hidden_size >= 4096) { return 4; } if (tp_size == 2) { return 32; } else { return 16; } } template cudaError_t lamport_style_one_shot_all_reduce_norm_kernel_launcher(AllReduceParams params, bool launch_with_pdl, cudaStream_t stream) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); FLASHINFER_CHECK(params.fusion_params.hidden_size % VEC_SIZE == 0, "hidden_size must be a multiple of ", VEC_SIZE); int threads_per_token = params.fusion_params.hidden_size / VEC_SIZE; int warps_per_token = (threads_per_token + details::kWarpSize - 1) / details::kWarpSize; int token_num = params.elts_total / params.fusion_params.hidden_size; int warp_min_number = heuristic_min_warp_number(RanksPerNode, params.fusion_params.hidden_size); int cluster_size = std::min(((warps_per_token + warp_min_number - 1) / warp_min_number), details::kClusterMaxSize); int cta_size = warps_per_token / cluster_size * details::kWarpSize; FLASHINFER_CHECK(cta_size <= details::kMaxCtaSize, "cta_size must be less than or equal to ", details::kMaxCtaSize); int cta_num = token_num * cluster_size; cudaLaunchConfig_t kernel_config = {0}; kernel_config.gridDim = cta_num; kernel_config.blockDim = cta_size; kernel_config.dynamicSmemBytes = 0; kernel_config.stream = stream; cudaLaunchAttribute attribute[2]; attribute[0].id = cudaLaunchAttributeClusterDimension; attribute[0].val.clusterDim.x = cluster_size; attribute[0].val.clusterDim.y = 1; attribute[0].val.clusterDim.z = 1; kernel_config.attrs = attribute; kernel_config.numAttrs = 1; if (launch_with_pdl) { attribute[1].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[1].val.programmaticStreamSerializationAllowed = 1; kernel_config.numAttrs++; } #define LAUNCH_LAMPORT_KERNEL(CLUSTER_SIZE) \ if (cluster_size == CLUSTER_SIZE) { \ FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( \ &kernel_config, \ lamport_style_one_shot_all_reduce_norm_kernel, \ params)); \ return cudaSuccess; \ } LAUNCH_LAMPORT_KERNEL(1); LAUNCH_LAMPORT_KERNEL(2); LAUNCH_LAMPORT_KERNEL(3); LAUNCH_LAMPORT_KERNEL(4); LAUNCH_LAMPORT_KERNEL(5); LAUNCH_LAMPORT_KERNEL(6); LAUNCH_LAMPORT_KERNEL(7); LAUNCH_LAMPORT_KERNEL(8); #undef LAUNCH_LAMPORT_KERNEL } template __global__ void __launch_bounds__(1024, 1) one_shot_all_reduce_norm_kernel(AllReduceParams params) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); extern __shared__ uint8_t smem_ptr[]; T* smem = reinterpret_cast(smem_ptr); int bid = blockIdx.x, tid = threadIdx.x; int norm_num = params.elts_total / params.fusion_params.hidden_size; int norm_per_block = (norm_num + gridDim.x - 1) / gridDim.x; int norm_this_block = std::min(norm_per_block, norm_num - bid * norm_per_block); T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); int block_offset = bid * norm_per_block * params.fusion_params.hidden_size; int thread_offset = tid * VEC_SIZE; local_input_buffer += block_offset; residual_buffer += block_offset; local_shared_buffer += block_offset; local_final_output_buffer += block_offset; intermediate_buffer += block_offset; T* buffers[RanksPerNode]; #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaGridDependencySynchronize(); #endif for (int offset = thread_offset; offset < norm_this_block * params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { *reinterpret_cast(&local_shared_buffer[offset]) = *reinterpret_cast(&local_input_buffer[offset]); } block_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RanksPerNode, tid, bid, gridDim.x); for (int norm_idx = 0; norm_idx < norm_this_block; ++norm_idx) { int norm_offset = norm_idx * params.fusion_params.hidden_size; float acc = 0.f; vec_t sum_vec, weight_vec, bias_vec, residual_vec; for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { vec_t vals[RanksPerNode]; sum_vec.fill(T(0)); if constexpr (Bias) { bias_vec.load(bias_buffer + offset); } residual_vec.load(residual_buffer + norm_offset + offset); #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { vals[ii].load(buffers[ii] + block_offset + norm_offset + offset); } #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { sum_vec = vec_add(sum_vec, vals[ii]); } if constexpr (Bias) { sum_vec = vec_add(sum_vec, bias_vec); } sum_vec = vec_add(sum_vec, residual_vec); sum_vec.store(&intermediate_buffer[norm_offset + offset]); acc = accumulate(acc, sum_vec); if constexpr (UseSmem) { sum_vec.store(&smem[offset]); } } acc = block_reduce_sum(acc); float denom = rsqrtf(acc / params.fusion_params.hidden_size + params.fusion_params.eps); for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { if constexpr (UseSmem) { sum_vec.load(&smem[offset]); } if constexpr (Affine) { weight_vec.load(weight_buffer + offset); } sum_vec = rms_norm(denom, sum_vec, weight_vec); sum_vec.store(&local_final_output_buffer[norm_offset + offset]); } } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template __global__ void __launch_bounds__(1024, 1) one_shot_prenorm_all_reduce_norm_kernel(AllReduceParams params) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); int bid = blockIdx.x, tid = threadIdx.x; int norm_num = params.elts_total / params.fusion_params.hidden_size; int norm_per_block = (norm_num + gridDim.x - 1) / gridDim.x; int norm_this_block = std::min(norm_per_block, norm_num - bid * norm_per_block); T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T const* weight_buffer_pre_residual_norm = reinterpret_cast(params.fusion_params.weight_buffer_pre_residual_norm); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); int block_offset = bid * norm_per_block * params.fusion_params.hidden_size; int thread_offset = tid * VEC_SIZE; local_input_buffer += block_offset; residual_buffer += block_offset; local_shared_buffer += block_offset; local_final_output_buffer += block_offset; intermediate_buffer += block_offset; T* buffers[RanksPerNode]; #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaGridDependencySynchronize(); #endif for (int offset = thread_offset; offset < norm_this_block * params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { *reinterpret_cast(&local_shared_buffer[offset]) = *reinterpret_cast(&local_input_buffer[offset]); } block_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RanksPerNode, tid, bid, gridDim.x); for (int norm_idx = 0; norm_idx < norm_this_block; ++norm_idx) { int norm_offset = norm_idx * params.fusion_params.hidden_size; float acc = 0.f; float acc_pre_residual_norm = 0.f; vec_t sum_vec, weight_vec, bias_vec, residual_vec, weight_vec_pre_residual_norm; for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * VEC_SIZE) { vec_t vals[RanksPerNode]; sum_vec.fill(T(0)); if constexpr (Bias) { bias_vec.load(bias_buffer + offset); } residual_vec.load(residual_buffer + norm_offset + offset); #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { vals[ii].load(buffers[ii] + block_offset + norm_offset + offset); } #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { sum_vec = vec_add(sum_vec, vals[ii]); } if constexpr (Bias) { sum_vec = vec_add(sum_vec, bias_vec); } // norm1 is pre-residual norm. acc_pre_residual_norm = accumulate(acc_pre_residual_norm, sum_vec); acc_pre_residual_norm = block_reduce_sum(acc_pre_residual_norm); float denom_pre_residual_norm = rsqrtf( acc_pre_residual_norm / params.fusion_params.hidden_size + params.fusion_params.eps); if constexpr (Affine) { weight_vec_pre_residual_norm.load(weight_buffer_pre_residual_norm + thread_offset); } sum_vec = rms_norm(denom_pre_residual_norm, sum_vec, weight_vec_pre_residual_norm); sum_vec = vec_add(sum_vec, residual_vec); sum_vec.store(&intermediate_buffer[norm_offset + offset]); acc = accumulate(acc, sum_vec); } acc = block_reduce_sum(acc); float denom = rsqrtf(acc / params.fusion_params.hidden_size + params.fusion_params.eps); if constexpr (Affine) { weight_vec.load(weight_buffer + thread_offset); } sum_vec = rms_norm(denom, sum_vec, weight_vec); sum_vec.store(&local_final_output_buffer[norm_offset + thread_offset]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template cudaError_t one_shot_all_reduce_norm_kernel_launcher(AllReduceParams& params, AllReduceFusionOp fusionOp, bool launch_with_pdl, cudaStream_t stream) { int token_num = params.elts_total / params.fusion_params.hidden_size; if (fusionOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM) { FLASHINFER_CHECK(params.fusion_params.hidden_size <= 8192, "hidden_size must be less than or equal to 8192"); } if (is_lamport_supported(token_num, params.fusion_params.hidden_size) && (fusionOp != AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM)) { lamport_style_one_shot_all_reduce_norm_kernel_launcher( params, launch_with_pdl, stream); } else { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); FLASHINFER_CHECK(params.fusion_params.hidden_size % VEC_SIZE == 0, "hidden_size must be a multiple of ", VEC_SIZE); int need_threads = params.fusion_params.hidden_size / VEC_SIZE; int cta_size; if (need_threads <= details::kMaxCtaSize) { cta_size = (need_threads + details::kWarpSize - 1) / details::kWarpSize * details::kWarpSize; } else { cta_size = details::kMaxCtaSize; } int norm_num = params.elts_total / params.fusion_params.hidden_size; int cta_num = std::min(norm_num, static_cast(MAX_ALL_REDUCE_BLOCKS)); int smem_size = 0; if (cta_size * VEC_SIZE < params.fusion_params.hidden_size) { smem_size = params.fusion_params.hidden_size * sizeof(T); cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; if (fusionOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, one_shot_all_reduce_norm_kernel, params)); } else { // fusionOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, one_shot_prenorm_all_reduce_norm_kernel, params)); } } else { cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; if (fusionOp == AllReduceFusionOp::RESIDUAL_RMS_NORM) { FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, one_shot_all_reduce_norm_kernel, params)); } else { // fusionOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, one_shot_prenorm_all_reduce_norm_kernel, params)); } } } return cudaSuccess; } template __global__ void lamport_initialize_kernel(T* buffer, size_t size) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); for (size_t offset = (blockIdx.x * blockDim.x + threadIdx.x) * VEC_SIZE; offset < size; offset += gridDim.x * blockDim.x * VEC_SIZE) { set_neg_zero(&buffer[offset]); } } template cudaError_t lamport_initialize_kernel_launcher(void* buffer, size_t size, cudaStream_t stream) { static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); int block_size = 1024; int grid_size = (size + 1024 * VEC_SIZE - 1) / (1024 * VEC_SIZE); lamport_initialize_kernel <<>>(reinterpret_cast(buffer), size); auto status = cudaGetLastError(); return status; } }; // namespace reduce_fusion template static __global__ void oneShotAllReduceKernel(AllReduceParams params) { // Suppose that two GPUs participate in the AR exchange, and we start four blocks. // The message is partitioned into chunks as detailed below: // message // |-------------------| // GPU 0 | B0 | B1 | B2 | B3 | // GPU 1 | B0 | B1 | B2 | B3 | // // Here the step-by-step behavior of one block: // 1. B0 copies the chunk it is responsible for, from local_input to shareable buffer // 2. B0 on GPU 0 and B0 on GPU 1 wait for each other (block_barrier) // 3. B0 on GPU 0 pull and sum the chunk from GPU 1, writes the result to local_output // // With COPY_INPUT == false, skip step 1. and use gpu_barrier instead of block barrier during // step 2. We only to know if the other GPU as arrived at the AR kernel, that would mean that data // is ready // // With PUSH_MODE, we consider that the shared buffer is of size: // params.peer_comm_buffer_ptrs: [world_size, world_size, message_size] // // Here the step-by-step behavior of one block: // 1. B0 push the chunk is it responsible for into all other GPUs: // params.peer_comm_buffer_ptrs[:, local_gpu, B0 slice] // 2. block sync so the block is shared by other GPUs // 3. Reduce along second dimension params.peer_comm_buffer_ptrs[local_gpu, :, B0 slice] int const bidx = blockIdx.x; int const tidx = threadIdx.x; int const grid_size = gridDim.x; static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); // Start and end offsets of the thread size_t const chunk_start = bidx * params.elts_per_block + tidx * VEC_SIZE; size_t const chunk_end = std::min((bidx + 1) * params.elts_per_block, params.elts_total); T* buffers[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { // buffers[0] is always the local buffers. Helps load balancing reads. int rank = (params.local_rank + ii) % RANKS_PER_NODE; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaGridDependencySynchronize(); #endif if constexpr (PUSH_MODE || COPY_INPUT) { // Copy from local buffer to shareable buffer for (size_t iter_offset = chunk_start; iter_offset < chunk_end; iter_offset += blockDim.x * VEC_SIZE) { if constexpr (PUSH_MODE) { #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { *reinterpret_cast( &buffers[ii][params.local_rank * params.elts_total + iter_offset]) = *reinterpret_cast(&local_input_buffer[iter_offset]); } } else { *reinterpret_cast(&local_shared_buffer[iter_offset]) = *reinterpret_cast(&local_input_buffer[iter_offset]); } } // wait for equivalent blocks of other GPUs to have copied data to their shareable buffer block_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx, grid_size); } else { // In the non-copy case, we assume that once the kernel has been started, data is ready to be // consumed multi_gpu_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx); } // Each block accumulates the values from the different GPUs on the same node. for (size_t iter_offset = chunk_start; iter_offset < chunk_end; iter_offset += blockDim.x * VEC_SIZE) { // Iterate over the different ranks/devices on the node to load the values. vec_t vals[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { if constexpr (PUSH_MODE) { vals[ii].load(&buffers[params.local_rank][ii * params.elts_total + iter_offset]); } else { vals[ii].load(&buffers[ii][iter_offset]); } } // Sum the values from the different ranks. vec_t sums; sums.fill(T(0)); #pragma unroll for (int rank = 0; rank < RANKS_PER_NODE; ++rank) { // Always reduce from rank 0 to ensure stable reduce order. int ii = (rank + RANKS_PER_NODE - params.local_rank) % RANKS_PER_NODE; sums = vec_add(sums, vals[ii]); } // Store to the destination buffer. sums.store(&local_output_buffer[iter_offset]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template static __global__ void __launch_bounds__(512, 1) twoShotAllReduceKernel(AllReduceParams params) { // Suppose that two GPUs participate in the AR exchange, and we start two blocks. // The message is partitioned into chunks as detailed below: // message // |-------------------| // |--GPU 0--|--GPU 1--| (GPU responsibility parts) // GPU 0 | B0 | B1 | B0 | B1 | // GPU 1 | B0 | B1 | B0 | B1 | // // Here the step-by-step behavior of one block: // 1. B0 copies all chunks is it responsible for, from local_input to shareable buffer // 2. B0 on GPU 0 and B0 on GPU 1 wait for each other (block_barrier #0) // 3. B0 on GPU 0 gather and sum the B0 chunks from GPU 1, that are in the GPU 0 responsibility // part (the first half of the message, see GPU responsibility row above) // 3bis. Likewise, B0 on GPU 1 copies and sum the chunks for GPU 0, // where GPU 1 is responsible: the second half of the message. // 4. B0 on GPU 0 and B0 on GPU 1 wait for each other (block_barrier #1) // 5. B0 writes result to local_output. It gathers each chunk from its responsible GPU. // For example, here it reads the first chunk from GPU 0 and second chunk from GPU 1. // // With COPY_INPUT == false, skip step 1. and use gpu_barrier instead of block barrier during // step 2. We only to know if the other GPU as arrived at the AR kernel, that would mean that data // is ready to be read. // // Note that compared to one-shot, one block (CTA) writes multiple input chunks and write multiple // output chunks. However, it's only responsible for the summation of a single chunk. // // With PUSH_MODE, we consider that the shared buffer is of size: // params.peer_comm_buffer_ptrs: [world_size, world_size, message_size / world_size] // // Here the step-by-step behavior of one block: // 1. B0 push the chunks is it responsible for into the corresponding GPUs: // params.peer_comm_buffer_ptrs[target_gpu, local_gpu, current B0 slice] // 2. block sync so the blocks have been shared by other GPUs // 3. Reduce along second dimension params.peer_comm_buffer_ptrs[local_gpu, :, B0 slice] // 4. block barrier (corresponding blocks have finished reduction) // 5. pull and write on local buffer, by reading params.peer_comm_buffer_ptrs[:, 0, B0 slice] // (reduction result is // written at index 0 of 2nd dim) int const bidx = blockIdx.x; int const tidx = threadIdx.x; int const grid_size = gridDim.x; static constexpr uint32_t VEC_SIZE = 16 / sizeof(T); T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); size_t const chunk_start = bidx * params.elts_per_block + tidx * VEC_SIZE; size_t const chunk_end = min(chunk_start + params.elts_per_block, params.elts_per_rank); T* buffers[RANKS_PER_NODE]; int ranks[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { // A mapping of the ranks to scatter reads as much as possible int rank = (params.local_rank + ii) % RANKS_PER_NODE; ranks[ii] = rank; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaGridDependencySynchronize(); #endif if constexpr (PUSH_MODE || COPY_INPUT) { // Copy all blocks from local buffer to shareable buffer for (size_t local_offset = chunk_start; local_offset < chunk_end; local_offset += blockDim.x * VEC_SIZE) { #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { size_t offset_rank = ranks[ii] * params.elts_per_rank + local_offset; if (offset_rank >= params.elts_total) { continue; } if constexpr (PUSH_MODE) { *reinterpret_cast( &buffers[ii][params.local_rank * params.elts_per_rank + local_offset]) = *reinterpret_cast(&local_input_buffer[offset_rank]); } else { *reinterpret_cast(&local_shared_buffer[offset_rank]) = *reinterpret_cast(&local_input_buffer[offset_rank]); } } } block_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx, grid_size); } else { // In the non-copy case, we assume that once the kernel has been started, data is ready to be // consumed multi_gpu_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx); } // Each block accumulates the values from the different GPUs on the same node. for (size_t local_offset = chunk_start; local_offset < chunk_end; local_offset += blockDim.x * VEC_SIZE) { size_t const responsible_block_offset = local_offset + params.rank_offset; // Iterate over the different ranks/devices on the node to load the values. vec_t vals[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { if constexpr (PUSH_MODE) { vals[ii].load(&local_shared_buffer[ii * params.elts_per_rank + local_offset]); } else { vals[ii].load(&buffers[ii][responsible_block_offset]); } } // Sum the values from the different ranks. vec_t sums; sums.fill(T(0)); #pragma unroll for (int rank = 0; rank < RANKS_PER_NODE; ++rank) { // Always reduce from rank 0 to ensure stable reduce order. int ii = (rank + RANKS_PER_NODE - params.local_rank) % RANKS_PER_NODE; sums = vec_add(sums, vals[ii]); } // Store to the local buffer. if constexpr (PUSH_MODE) { sums.store(&local_shared_buffer[local_offset]); } else { sums.store(&local_shared_buffer[responsible_block_offset]); } } block_barrier(params.peer_barrier_ptrs_out, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx, grid_size); // Gather all needed elts from other intra-node ranks for (size_t local_offset = chunk_start; local_offset < chunk_end; local_offset += blockDim.x * VEC_SIZE) { #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { // use round-robin gathering from other ranks size_t offset_rank = ranks[ii] * params.elts_per_rank + local_offset; if (offset_rank >= params.elts_total) { continue; } vec_t sums, residual_vec, bias_vec; if constexpr (Bias) { bias_vec.load(reinterpret_cast(params.fusion_params.bias_buffer) + offset_rank % params.fusion_params.hidden_size); } if constexpr (Residual) { residual_vec.load(reinterpret_cast(params.fusion_params.residual_buffer) + offset_rank); } if constexpr (PUSH_MODE) { *reinterpret_cast(&local_output_buffer[offset_rank]) = *reinterpret_cast(&buffers[ii][local_offset]); sums.load(&buffers[ii][local_offset]); } else { *reinterpret_cast(&local_output_buffer[offset_rank]) = *reinterpret_cast(&buffers[ii][offset_rank]); sums.load(&buffers[ii][offset_rank]); } if constexpr (Bias) { sums = vec_add(sums, bias_vec); } if constexpr (Residual) { sums = vec_add(sums, residual_vec); } sums.store(&local_output_buffer[offset_rank]); } } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDA_ARCH__ < 1200)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template bool configurationSupported(AllReduceStrategyType algo, size_t msg_size, size_t n_ranks) { size_t elts_per_thread = 16 / sizeof(T); int const msg_align = (algo == AllReduceStrategyType::TWOSHOT) ? n_ranks * elts_per_thread : elts_per_thread; bool supported_algo = (algo == AllReduceStrategyType::ONESHOT || algo == AllReduceStrategyType::TWOSHOT); return supported_algo && (msg_size % msg_align == 0); } template std::tuple kernelLaunchConfig(AllReduceStrategyType algo, AllReduceParams& params, size_t elts_per_thread) { int blocks_per_grid = 1, threads_per_block = DEFAULT_BLOCK_SIZE; switch (algo) { case AllReduceStrategyType::ONESHOT: { FLASHINFER_CHECK(params.elts_total % elts_per_thread == 0, "hidden_size must be a multiple of ", elts_per_thread); size_t const total_threads = round_up(params.elts_total / elts_per_thread, WARP_SIZE); threads_per_block = std::min(DEFAULT_BLOCK_SIZE, total_threads); blocks_per_grid = std::min(static_cast(MAX_ALL_REDUCE_BLOCKS), ceil_div(total_threads, threads_per_block)); params.elts_per_block = round_up(ceil_div(params.elts_total, blocks_per_grid), elts_per_thread); break; } case AllReduceStrategyType::TWOSHOT: { FLASHINFER_CHECK(params.elts_total % (elts_per_thread * params.ranks_per_node) == 0, "hidden_size must be a multiple of ", elts_per_thread * params.ranks_per_node); size_t const total_threads = round_up(params.elts_total / (elts_per_thread * params.ranks_per_node), WARP_SIZE); /* threads_per_block = std::min(DEFAULT_BLOCK_SIZE, total_threads); blocks_per_grid = std::min(static_cast(MAX_ALL_REDUCE_BLOCKS), ceil_div(total_threads, threads_per_block)); */ while (total_threads % blocks_per_grid != 0 || total_threads / blocks_per_grid > DEFAULT_BLOCK_SIZE) { blocks_per_grid += 1; } threads_per_block = total_threads / blocks_per_grid; // NOTE: need to adjust here if (blocks_per_grid > MAX_ALL_REDUCE_BLOCKS) { size_t iter_factor = 1; while (blocks_per_grid / iter_factor > MAX_ALL_REDUCE_BLOCKS || blocks_per_grid % iter_factor) { iter_factor += 1; } blocks_per_grid /= iter_factor; } params.elts_per_rank = params.elts_total / params.ranks_per_node; params.rank_offset = params.local_rank * params.elts_per_rank; params.elts_per_block = round_up(ceil_div(params.elts_per_rank, blocks_per_grid), elts_per_thread); break; } default: FLASHINFER_ERROR("Algorithm not supported here."); } return std::make_tuple(blocks_per_grid, threads_per_block); } template cudaError_t AllReduceNormKernelLaunch(AllReduceStrategyType algo, AllReduceFusionOp fusionOp, AllReduceParams& params, bool launch_with_pdl, cudaStream_t stream) { FLASHINFER_CHECK((fusionOp == AllReduceFusionOp::RESIDUAL_RMS_NORM || fusionOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM), "Unsupported AllReduceFusionOp: %d", static_cast(fusionOp)); if (algo == AllReduceStrategyType::ONESHOT) { return reduce_fusion::one_shot_all_reduce_norm_kernel_launcher( params, fusionOp, launch_with_pdl, stream); } else { FLASHINFER_CHECK(!(USE_MEMCPY && PUSH_MODE), "Memcpy cannot be used with PUSH_MODE."); size_t elts_per_thread = 16 / sizeof(T); auto [blocks_per_grid, threads_per_block] = kernelLaunchConfig(algo, params, elts_per_thread); if (USE_MEMCPY) { cudaMemcpyAsync(params.peer_comm_buffer_ptrs[params.local_rank], params.local_input_buffer_ptr, params.elts_total * sizeof(T), cudaMemcpyDeviceToDevice, stream); } auto output_ptr = params.local_output_buffer_ptr; params.local_output_buffer_ptr = params.fusion_params.intermediate_buffer; cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = blocks_per_grid; kernelConfig.blockDim = threads_per_block; kernelConfig.dynamicSmemBytes = 0; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; FLASHINFER_CUDA_CALL(cudaLaunchKernelEx( &kernelConfig, twoShotAllReduceKernel, params)); params.local_output_buffer_ptr = output_ptr; return reduce_fusion::rms_norm_kernel_launcher( params, fusionOp, launch_with_pdl, stream); } return cudaSuccess; } template cudaError_t AllReduceNormDispatch(AllReduceStrategyType algo, AllReduceFusionOp fusionOp, AllReduceParams& params, bool launch_with_pdl, cudaStream_t stream) { if (params.fusion_params.bias_buffer && params.fusion_params.weight_buffer) { return AllReduceNormKernelLaunch( algo, fusionOp, params, launch_with_pdl, stream); } else if (params.fusion_params.bias_buffer && !params.fusion_params.weight_buffer) { return AllReduceNormKernelLaunch( algo, fusionOp, params, launch_with_pdl, stream); } else if (!params.fusion_params.bias_buffer && params.fusion_params.weight_buffer) { return AllReduceNormKernelLaunch( algo, fusionOp, params, launch_with_pdl, stream); } else { return AllReduceNormKernelLaunch( algo, fusionOp, params, launch_with_pdl, stream); } return cudaSuccess; } template cudaError_t AllReduceDispatch(AllReduceStrategyType algo, AllReduceFusionOp fusionOp, AllReduceParams& params, bool launch_with_pdl, cudaStream_t stream) { FLASHINFER_CHECK(fusionOp == AllReduceFusionOp::NONE, "Unsupported AllReduceFusionOp: %d", static_cast(fusionOp)); FLASHINFER_CHECK(!(USE_MEMCPY && PUSH_MODE), "Memcpy cannot be used with PUSH_MODE."); size_t elts_per_thread = 16 / sizeof(T); auto [blocks_per_grid, threads_per_block] = kernelLaunchConfig(algo, params, elts_per_thread); if (USE_MEMCPY) { cudaMemcpyAsync(params.peer_comm_buffer_ptrs[params.local_rank], params.local_input_buffer_ptr, params.elts_total * sizeof(T), cudaMemcpyDeviceToDevice, stream); } if (algo == AllReduceStrategyType::ONESHOT) { auto* kernel_instance = &oneShotAllReduceKernel; cudaLaunchConfig_t config; config.gridDim = blocks_per_grid; config.blockDim = threads_per_block; config.dynamicSmemBytes = 0; config.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; config.attrs = attribute; config.numAttrs = 1; cudaLaunchKernelEx(&config, kernel_instance, params); } else { auto* kernel_instance = &twoShotAllReduceKernel; cudaLaunchConfig_t config; config.gridDim = blocks_per_grid; config.blockDim = threads_per_block; config.dynamicSmemBytes = 0; config.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = launch_with_pdl; config.attrs = attribute; config.numAttrs = 1; cudaLaunchKernelEx(&config, kernel_instance, params); } return cudaSuccess; } template cudaError_t AllReduceDispatchMemcpy(AllReduceStrategyType algo, AllReduceFusionOp fusionOp, AllReduceParams& params, bool launch_with_pdl, cudaStream_t stream) { if (fusionOp == AllReduceFusionOp::NONE) { FLASHINFER_LOG_DEBUG("AllReduceDispatch enabled"); return AllReduceDispatch(algo, fusionOp, params, launch_with_pdl, stream); } else { FLASHINFER_LOG_DEBUG("AllReduceNormDispatch enabled"); return AllReduceNormDispatch(algo, fusionOp, params, launch_with_pdl, stream); } } template cudaError_t AllReduceDispatchPushMode(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, bool launch_with_pdl, cudaStream_t stream) { if (static_cast>(config) & static_cast>( AllReduceStrategyConfig::USE_MEMCPY)) { return AllReduceDispatchMemcpy(algo, fusionOp, params, launch_with_pdl, stream); } else { return AllReduceDispatchMemcpy(algo, fusionOp, params, launch_with_pdl, stream); } } template //, bool USE_MEMCPY = false, bool PUSH_MODE = false> cudaError_t AllReduceDispatchRanksPerNode(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, bool launch_with_pdl, cudaStream_t stream) { if (static_cast>(config) & static_cast>( AllReduceStrategyConfig::PUSH_MODE)) { return AllReduceDispatchPushMode(algo, config, fusionOp, params, launch_with_pdl, stream); } else { return AllReduceDispatchPushMode(algo, config, fusionOp, params, launch_with_pdl, stream); } } template cudaError_t AllReduceDispatchType(AllReduceParams& params, AllReduceStrategyType strat, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, bool launch_with_pdl, cudaStream_t stream) { switch (params.ranks_per_node) { case 2: return AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, launch_with_pdl, stream); case 4: return AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, launch_with_pdl, stream); case 6: return AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, launch_with_pdl, stream); case 8: return AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, launch_with_pdl, stream); case 16: return AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, launch_with_pdl, stream); default: FLASHINFER_ERROR("Custom all reduce only supported on {2, 4, 6, 8, 16} GPUs per node."); } return cudaSuccess; } template cudaError_t customAllReduce(AllReduceParams& params, AllReduceStrategyType strat, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, bool launch_with_pdl, cudaStream_t stream) { FLASHINFER_CHECK(configurationSupported(strat, params.elts_total, params.ranks_per_node), "Custom all-reduce configuration unsupported"); return AllReduceDispatchType(params, strat, config, fusionOp, launch_with_pdl, stream); } template cudaError_t lamportInitialize(void* buffer, size_t size, cudaStream_t stream) { if (size == 0) { return cudaSuccess; } FLASHINFER_LOG_INFO("lamportInitialize start: buffer: {}, size: {}", buffer, size); return reduce_fusion::lamport_initialize_kernel_launcher(buffer, size, stream); } // lamport: 3 buffers for synchronization template cudaError_t lamportInitializeAll(void* buffer_0, void* buffer_1, void* buffer_2, size_t size, cudaStream_t stream) { auto status = lamportInitialize(buffer_0, size / sizeof(T), stream); FLASHINFER_CHECK(status == cudaSuccess, "lamportInitialize failed with error code " + std::string(cudaGetErrorString(status))); status = lamportInitialize(buffer_1, size / sizeof(T), stream); FLASHINFER_CHECK(status == cudaSuccess, "lamportInitialize failed with error code " + std::string(cudaGetErrorString(status))); status = lamportInitialize(buffer_2, size / sizeof(T), stream); FLASHINFER_CHECK(status == cudaSuccess, "lamportInitialize failed with error code " + std::string(cudaGetErrorString(status))); cudaDeviceSynchronize(); return cudaSuccess; } } // namespace trtllm_allreduce } // namespace flashinfer