import pytest import torch import torch.nn.functional as F from flashinfer import autotune, bmm_fp8 def to_float8(x, dtype=torch.float8_e4m3fn): finfo = torch.finfo(dtype) min_val, max_val = x.aminmax() amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12) scale = finfo.max / amax x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max) return x_scl_sat.to(dtype), scale.float().reciprocal() @pytest.mark.parametrize("b", [1, 16]) @pytest.mark.parametrize("m", [48, 128]) @pytest.mark.parametrize("n", [80, 64]) @pytest.mark.parametrize("k", [64, 256]) @pytest.mark.parametrize("input_dtype", [torch.float8_e4m3fn, torch.float8_e5m2]) @pytest.mark.parametrize("mat2_dtype", [torch.float8_e4m3fn, torch.float8_e5m2]) @pytest.mark.parametrize("res_dtype", [torch.bfloat16, torch.float16]) @pytest.mark.parametrize("backend", ["cudnn", "cublas", "cutlass", "auto"]) @pytest.mark.parametrize("auto_tuning", [True, False]) def test_bmm_fp8(b, m, n, k, input_dtype, mat2_dtype, res_dtype, backend, auto_tuning): if input_dtype == torch.float8_e5m2 and mat2_dtype == torch.float8_e5m2: pytest.skip("Invalid combination: both input and mat2 are e5m2") if input_dtype == torch.float8_e5m2 or mat2_dtype == torch.float8_e5m2: if backend == "cutlass": pytest.skip("Invalid combination: cutlass does not support e5m2") if auto_tuning and backend != "cutlass": pytest.skip("Invalid combination: auto_tuning only supported for cutlass") input = torch.randn([b, m, k], device="cuda", dtype=torch.bfloat16) input_fp8, input_inv_s = to_float8(input, dtype=input_dtype) # mat2 row major -> column major mat2 = torch.randn([b, n, k], device="cuda", dtype=torch.bfloat16).transpose(-2, -1) mat2_fp8, mat2_inv_s = to_float8(mat2, dtype=mat2_dtype) reference = torch.bmm(input, mat2) res = torch.empty([b, m, n], device="cuda", dtype=res_dtype) with autotune(auto_tuning): bmm_fp8( input_fp8, mat2_fp8, input_inv_s, mat2_inv_s, res_dtype, res, backend=backend, ) cos_sim = F.cosine_similarity(reference.reshape(-1), res.reshape(-1), dim=0) assert cos_sim > 0.99 if __name__ == "__main__": pytest.main([__file__])