#include #include #include #include #include #include #include #include #include #include extern unsigned long long median(unsigned long long array[], size_t length); extern void read_memory(const void* memory, size_t length); enum mode { mode_output, mode_output_inplace, mode_input_gradient, }; unsigned long long benchmark_relu( enum mode mode, const void* memory, size_t cache_size, size_t batch_size, size_t channels, const float gradient[], const float input[], float output[], pthreadpool_t threadpool, size_t max_iterations) { unsigned long long computation_time[max_iterations]; size_t computation_samples = 0; for (size_t iteration = 0; iteration < max_iterations; iteration++) { read_memory(memory, cache_size); unsigned long long start_time, end_time; if (!read_timer(&start_time)) continue; switch (mode) { case mode_output: nnp_relu_output( batch_size, channels, input, output, 0.0f, threadpool); break; case mode_output_inplace: nnp_relu_output( batch_size, channels, output, output, 0.0f, threadpool); break; case mode_input_gradient: nnp_relu_input_gradient( batch_size, channels, gradient, input, output, 0.0f, threadpool); break; } if (!read_timer(&end_time)) continue; computation_time[computation_samples++] = end_time - start_time; } return median(computation_time, max_iterations); } struct options { enum mode mode; size_t batch_size; size_t channels; size_t threads; size_t iterations; bool threadpool; }; static void print_options_help(const char* program_name) { printf( "%s parameters...\n" "Required parameters:\n" " -c --channels The number of channels\n" "Optional parameters:\n" " -m --mode The fully connected layer mode (output, output-inplace, input-gradient)\n" " -b --batch The size of a minibatch (default: 1)\n" " -t --threads The number of threads (default: all; 0 to disable threadpool)\n" " -i --iterations # iterations (default: 15)\n", program_name); } static struct options parse_options(int argc, char** argv) { struct options options = { .mode = mode_output, .batch_size = 1, .channels = 0, .threads = 0, .iterations = 15, .threadpool = true, }; for (int argi = 1; argi < argc; argi += 1) { if ((strcmp(argv[argi], "--batch") == 0) || (strcmp(argv[argi], "-b") == 0)) { if (argi + 1 == argc) { fprintf(stderr, "Error: expected batch value\n"); exit(EXIT_FAILURE); } if (sscanf(argv[argi + 1], "%zu", &options.batch_size) != 1) { fprintf(stderr, "Error: can not parse %s as an unsigned integer\n", argv[argi + 1]); exit(EXIT_FAILURE); } if (options.batch_size == 0) { fprintf(stderr, "Error: invalid value %s for the batch size: positive value expected\n", argv[argi + 1]); exit(EXIT_FAILURE); } argi += 1; } else if ((strcmp(argv[argi], "--channels") == 0) || (strcmp(argv[argi], "-c") == 0)) { if (argi + 1 == argc) { fprintf(stderr, "Error: expected channels value\n"); exit(EXIT_FAILURE); } if (sscanf(argv[argi + 1], "%zu", &options.channels) != 1) { fprintf(stderr, "Error: can not parse %s as an unsigned integer\n", argv[argi + 1]); exit(EXIT_FAILURE); } if (options.channels == 0) { fprintf(stderr, "Error: invalid value %s for the number of channels: positive value expected\n", argv[argi + 1]); exit(EXIT_FAILURE); } argi += 1; } else if ((strcmp(argv[argi], "--mode") == 0) || (strcmp(argv[argi], "-m") == 0)) { if (argi + 1 == argc) { fprintf(stderr, "Error: expected mode name\n"); exit(EXIT_FAILURE); } if (strcmp(argv[argi + 1], "output") == 0) { options.mode = mode_output; } else if (strcmp(argv[argi + 1], "output-inplace") == 0) { options.mode = mode_output_inplace; } else if (strcmp(argv[argi + 1], "input-gradient") == 0) { options.mode = mode_input_gradient; } else { fprintf(stderr, "Error: invalid value %s for the mode\n", argv[argi + 1]); exit(EXIT_FAILURE); } argi += 1; } else if ((strcmp(argv[argi], "--threads") == 0) || (strcmp(argv[argi], "-t") == 0)) { if (argi + 1 == argc) { fprintf(stderr, "Error: expected number of threads value\n"); exit(EXIT_FAILURE); } if (sscanf(argv[argi + 1], "%zu", &options.threads) != 1) { fprintf(stderr, "Error: can not parse %s as an unsigned integer\n", argv[argi + 1]); exit(EXIT_FAILURE); } if (options.threads == 0) { options.threadpool = false; } argi += 1; } else if ((strcmp(argv[argi], "--iterations") == 0) || (strcmp(argv[argi], "-i") == 0)) { if (argi + 1 == argc) { fprintf(stderr, "Error: expected iterations value\n"); exit(EXIT_FAILURE); } if (sscanf(argv[argi + 1], "%zu", &options.iterations) != 1) { fprintf(stderr, "Error: can not parse %s as an unsigned integer\n", argv[argi + 1]); exit(EXIT_FAILURE); } if (options.iterations == 0) { fprintf(stderr, "Error: invalid value %s for the number of iterations: positive value expected\n", argv[argi + 1]); exit(EXIT_FAILURE); } argi += 1; } else if ((strcmp(argv[argi], "--help") == 0) || (strcmp(argv[argi], "-h") == 0)) { print_options_help(argv[0]); exit(EXIT_SUCCESS); } else { fprintf(stderr, "Error: unknown argument '%s'\n", argv[argi]); print_options_help(argv[0]); exit(EXIT_FAILURE); } } if (options.channels == 0) { fprintf(stderr, "Error: the number of channels is not specified\n"); print_options_help(argv[0]); exit(EXIT_FAILURE); } return options; } int main(int argc, char** argv) { enum nnp_status init_status = nnp_initialize(); if (init_status != nnp_status_success) { fprintf(stderr, "NNPACK initialization failed: error code %d\n", init_status); exit(EXIT_FAILURE); } const struct options options = parse_options(argc, argv); printf("Batch size: %zu\n", options.batch_size); printf("Channels: %zu\n", options.channels); #ifdef __ANDROID__ const size_t cache_size = 4 * 1024 * 1024; #else const size_t cache_size = 128 * 1024 * 1024; #endif void* memory = NULL; #if defined(__ANDROID__) memory = memalign(64, cache_size); if (memory == NULL) { fprintf(stderr, "Error: failed to allocate memory for cache flushing buffer\n"); exit(EXIT_FAILURE); } #else if (posix_memalign(&memory, 64, cache_size) != 0) { fprintf(stderr, "Error: failed to allocate memory for cache flushing buffer\n"); exit(EXIT_FAILURE); } #endif const size_t layer_bytes = options.batch_size * options.channels * sizeof(float); void* gradient = NULL; void* input = NULL; void* output = malloc(layer_bytes); memset(output, 0, layer_bytes); if (options.mode == mode_input_gradient) { gradient = malloc(layer_bytes); memset(gradient, 0, layer_bytes); } if (options.mode != mode_output_inplace) { input = malloc(layer_bytes); memset(input, 0, layer_bytes); } pthreadpool_t threadpool = NULL; if (options.threadpool) { threadpool = pthreadpool_create(options.threads); printf("Threads: %zu\n", pthreadpool_get_threads_count(threadpool)); } printf("Iterations: %zu\n", options.iterations); const unsigned long long relu_nanoseconds = benchmark_relu( options.mode, memory, cache_size, options.batch_size, options.channels, gradient, input, output, threadpool, options.iterations); const double transferred_bytes = (options.mode == mode_input_gradient) ? 3.0 * layer_bytes : 2.0 * layer_bytes; printf("Time: %5.3f ms [%.1f GB/s]\n", ((double) relu_nanoseconds) * 1.0e-6, transferred_bytes / ((double) relu_nanoseconds)); if (threadpool) { pthreadpool_destroy(threadpool); } return EXIT_SUCCESS; }