// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include "dconv.h" #include "utils.h" #include "xnnpack.h" #include "xnnpack/common.h" #include "xnnpack/conv.h" #include "xnnpack/math.h" #include "xnnpack/microfnptr.h" #include "xnnpack/microparams-init.h" #include "xnnpack/pack.h" #include "xnnpack/buffer.h" #include static void f16_conv_hwc2chw(benchmark::State& state, xnn_f16_conv_hwc2chw_ukernel_fn conv, uint32_t output_channels_tile, xnn_init_f16_minmax_params_fn init_params, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if ((isa_check != nullptr) && !isa_check(state)) { return; } const size_t input_height = state.range(0); const size_t input_width = state.range(1); const size_t output_channels = state.range(2); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); const size_t input_channels = 3; const size_t kernel_size = 3; const size_t padding = 1; const size_t subsampling = 2; const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1; const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1; xnnpack::Buffer input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(xnn_float16)); std::generate(input.begin(), input.end(), f32rng); xnnpack::Buffer kernel(output_channels * kernel_size * kernel_size * input_channels); std::generate(kernel.begin(), kernel.end(), f32rng); xnnpack::Buffer bias(output_channels); std::generate(bias.begin(), bias.end(), f32rng); xnnpack::Buffer zero( input_channels * input_width + XNN_EXTRA_BYTES / sizeof(xnn_float16)); const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) * benchmark::utils::RoundUp(output_channels, output_channels_tile); const size_t output_elements = output_height * output_width * output_channels; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), sizeof(xnn_float16) * (weights_elements + output_elements)); xnnpack::Buffer packed_weights( weights_elements * num_buffers); xnn_pack_f16_dconv_oki_w( output_channels, input_channels, output_channels_tile, kernel_size /* kernel height */, kernel_size /* kernel width */, reinterpret_cast(kernel.data()), reinterpret_cast(bias.data()), reinterpret_cast(packed_weights.data()), nullptr); for (size_t n = 1; n < num_buffers; n++) { std::copy(packed_weights.cbegin(), packed_weights.cbegin() + weights_elements, packed_weights.begin() + n * weights_elements); } xnnpack::Buffer output(output_elements * num_buffers); xnn_f16_minmax_params params; init_params(¶ms, 0x7C00 /* inf */, 0xFC00 /* -inf */); size_t buffer_index = 0; for (auto _ : state) { state.PauseTiming(); benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(xnn_float16)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); conv( input_height, input_width, 0 /* output_y_start */, output_height /* output_y_end */, input.data(), zero.data(), packed_weights.data() + buffer_index * weights_elements, output.data() + buffer_index * output_elements, padding, output_channels, output_channels * output_width * sizeof(xnn_float16), output_channels * sizeof(xnn_float16), ¶ms); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * output_height * output_width * input_channels * output_channels * kernel_size * kernel_size, benchmark::Counter::kIsRate); } #if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64) static void f16_conv_hwc2chw_3x3s2p1c3x4__neonfp16arith_2x2(benchmark::State& state, const char* net) { f16_conv_hwc2chw(state, xnn_f16_conv_hwc2chw_ukernel_3x3s2p1c3x4__neonfp16arith_2x2, 4, xnn_init_f16_minmax_scalar_params, benchmark::utils::CheckNEONFP16ARITH); } BENCHMARK_DCONV(f16_conv_hwc2chw_3x3s2p1c3x4__neonfp16arith_2x2); #endif // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64) #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif