// Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include "utils.h" #include "xnnpack.h" #include "xnnpack/common.h" #include "xnnpack/config-types.h" #include "xnnpack/gemm.h" #include "xnnpack/math.h" #include "xnnpack/microfnptr.h" #include "xnnpack/microparams-init.h" #include "xnnpack/microparams.h" #include "xnnpack/pack.h" #include "xnnpack/packq.h" #include "xnnpack/packw.h" #include "xnnpack/buffer.h" #include void GEMMBenchmark(benchmark::State& state, xnn_qs8_gemm_minmax_ukernel_fn gemm, xnn_init_qs8_conv_minmax_params_fn init_params, xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t)); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer b(nc); std::generate(b.begin(), b.end(), std::ref(i32rng)); const size_t w_element_size = sizeof(int8_t); const size_t w_size = nc_stride * sizeof(int32_t) + kc_stride * nc_stride * w_element_size; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), w_size + c_elements * sizeof(int8_t)); xnnpack::Buffer w(w_size * num_buffers); const xnn_qs8_packing_params packing_params = {127}; pack(/*g=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr, w.data(), /*extra_bytes=*/0, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); union xnn_qs8_conv_minmax_params quantization_params; init_params(&quantization_params, /*scale=*/0.75f, /*output_zero_point=*/127, /*output_min=*/-127, /*output_max=*/126); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(int8_t)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); for (uint32_t n = 0; n < nc; n += nr) { const uint32_t nb = min(nc - n, nr); gemm(mb, nb, kc * sizeof(int8_t), a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_size * buffer_index + n * (kc_stride * w_element_size + sizeof(int32_t)), c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(int8_t), nr * sizeof(int8_t), &quantization_params); } } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qs8_qc8w_gemm_minmax_ukernel_fn gemm, xnn_init_qs8_qc8w_conv_minmax_params_fn init_params, xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t)); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer b(nc); std::generate(b.begin(), b.end(), std::ref(i32rng)); const size_t w_element_size = sizeof(int8_t); const size_t w_size = nc_stride * sizeof(int32_t) + kc_stride * nc_stride * w_element_size; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), w_size + c_elements * sizeof(int8_t)); xnnpack::Buffer w(w_size * num_buffers); const xnn_qs8_packing_params packing_params = {int8_t(127 - 0x80)}; pack(/*g=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr, w.data(), nr * sizeof(float), &packing_params); xnnpack::Buffer c(c_elements * num_buffers); union xnn_qs8_qc8w_conv_minmax_params quantization_params; init_params(&quantization_params, /*output_zero_point=*/127, /*output_min=*/-127, /*output_max=*/126); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(int8_t)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); for (uint32_t n = 0; n < nc; n += nr) { const uint32_t nb = min(nc - n, nr); gemm(mb, nb, kc * sizeof(int8_t), a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_size * buffer_index + n * (kc_stride * w_element_size + sizeof(int32_t)), c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(int8_t), nr * sizeof(int8_t), &quantization_params); } } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qd8_f16_qc8w_gemm_ukernel_fn gemm, xnn_init_f16_minmax_params_fn init_params, xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t)); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer quantization_params( mc + XNN_EXTRA_QUANTIZATION_PARAMS); const size_t w_elements = nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); const xnn_qs8_packing_params packing_params = {/*input_zero_point=*/1}; pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr, w.data(), sizeof(float) * 2 * nr, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f16_minmax_params params; init_params(¶ms, static_cast(std::numeric_limits::min()), static_cast(std::numeric_limits::max())); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_elements * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(xnn_float16), nr * sizeof(xnn_float16), ¶ms, quantization_params.data() + m); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qd8_f32_qc8w_gemm_ukernel_fn gemm, xnn_init_f32_minmax_params_fn init_params, xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t)); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer quantization_params( mc + XNN_EXTRA_QUANTIZATION_PARAMS); const size_t w_elements = nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); const xnn_qs8_packing_params packing_params = {/*input_zero_point=*/1}; pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr, w.data(), sizeof(float) * 2 * nr, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f32_minmax_params params; init_params(¶ms, std::numeric_limits::min(), std::numeric_limits::max()); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_elements * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), nr * sizeof(float), ¶ms, quantization_params.data() + m); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qd8_f16_qb4w_gemm_ukernel_fn gemm, xnn_init_f16_qb4w_minmax_params_fn init_params, xnn_pack_qs8_qb4w_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t bl = state.range(3); const size_t kc = round_up(state.range(2), bl); std::random_device random_device; auto rng = std::mt19937(random_device()); auto scalerng = std::bind(std::uniform_real_distribution(0.5f, 2.f), std::ref(rng)); const size_t planes = 2; // 4 bit is 2 planes - low nibbles and high nibbles const size_t k2 = round_up_po2(kc, 2); // tester assumes byte aligned rows const size_t packed_k2 = round_up_po2(kc, kr * sr * planes); // 2 blocks for nibbles const size_t packed_k_bytes = (packed_k2 + 1) / 2; const size_t num_blocks = packed_k2 / bl; const size_t packed_n = round_up_po2(nc, nr); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc / 2); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer kernel_scale2d(nc * k2 / bl); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); std::generate(kernel_scale2d.begin(), kernel_scale2d.end(), [&]() { return scalerng(); }); xnnpack::Buffer quantization_params( mc + XNN_EXTRA_QUANTIZATION_PARAMS); const size_t w_bytes = packed_n * packed_k_bytes + /* vksum */ packed_n * sizeof(float) + /* scales */ packed_n * num_blocks * sizeof(float) + /* bias */ packed_n * sizeof(float); const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), w_bytes + sizeof(xnn_bfloat16) * c_elements); xnnpack::Buffer w(w_bytes * num_buffers); const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1, /*kernel_zero_point=*/8}; pack(1, nc, k2, nr, kr, sr, bl, k.data(), /*bias=*/nullptr, /*scale=*/kernel_scale2d.data(), w.data(), sizeof(float) * nr, sizeof(float) * nr, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f16_qb4w_minmax_params params; init_params( ¶ms, std::numeric_limits::min(), std::numeric_limits::max(), 8, bl); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_bytes * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(xnn_float16), nr * sizeof(xnn_float16), ¶ms, quantization_params.data() + m); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qd8_f16_qc4w_gemm_ukernel_fn gemm, xnn_init_f16_qc4w_minmax_params_fn init_params, xnn_pack_qs8_qc4w_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr) / 2; std::random_device random_device; auto rng = std::mt19937(random_device()); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc / 2); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer quantization_params( mc + XNN_EXTRA_QUANTIZATION_PARAMS); const size_t w_elements = nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1, /*kernel_zero_point=*/8}; pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr, w.data(), sizeof(float) * 2 * nr, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f16_qc4w_minmax_params params; init_params(¶ms, std::numeric_limits::min(), std::numeric_limits::max(), 8); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_elements * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(xnn_float16), nr * sizeof(xnn_float16), ¶ms, quantization_params.data() + m); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qd8_f32_qb4w_gemm_ukernel_fn gemm, xnn_init_f32_qb4w_minmax_params_fn init_params, xnn_pack_qs8_qb4w_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t bl = state.range(3); const size_t kc = round_up(state.range(2), bl); std::random_device random_device; auto rng = std::mt19937(random_device()); auto scalerng = std::bind(std::uniform_real_distribution(0.5f, 2.f), std::ref(rng)); const size_t planes = 2; // 4 bit is 2 planes - low nibbles and high nibbles const size_t k2 = round_up_po2(kc, 2); // tester assumes byte aligned rows const size_t packed_k2 = round_up_po2(kc, kr * sr * planes); // 2 blocks for nibbles const size_t packed_k_bytes = (packed_k2 + 1) / 2; const size_t num_blocks = packed_k2 / bl; const size_t packed_n = round_up_po2(nc, nr); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc / 2); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer kernel_scale2d(nc * k2 / bl); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); std::generate(kernel_scale2d.begin(), kernel_scale2d.end(), [&]() { return scalerng(); }); xnnpack::Buffer quantization_params( mc + XNN_EXTRA_QUANTIZATION_PARAMS); const size_t w_bytes = packed_n * packed_k_bytes + /* vksum */ packed_n * sizeof(float) + /* scales */ packed_n * num_blocks * sizeof(float) + /* bias */ packed_n * sizeof(float); const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), w_bytes + sizeof(float) * c_elements); xnnpack::Buffer w(w_bytes * num_buffers); const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1, /*kernel_zero_point=*/8}; pack(1, nc, k2, nr, kr, sr, bl, k.data(), /*bias=*/nullptr, /*scale=*/kernel_scale2d.data(), w.data(), sizeof(float) * nr, sizeof(float) * nr, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f32_qb4w_minmax_params params; init_params(¶ms, std::numeric_limits::min(), std::numeric_limits::max(), 8, bl); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_bytes * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), nr * sizeof(float), ¶ms, quantization_params.data() + m); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qd8_f32_qc4w_gemm_ukernel_fn gemm, xnn_init_f32_qc4w_minmax_params_fn init_params, xnn_pack_qs8_qc4w_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = round_up_po2(nc, nr); const size_t kc_stride = (round_up_po2(kc, kr * sr * 2) + 1) / 2; std::random_device random_device; auto rng = std::mt19937(random_device()); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc / 2); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer quantization_params( mc + XNN_EXTRA_QUANTIZATION_PARAMS); const size_t w_elements = nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1, /*kernel_zero_point=*/8}; pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr, w.data(), sizeof(float) * 2 * nr, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f32_qc4w_minmax_params params; init_params(¶ms, std::numeric_limits::min(), std::numeric_limits::max(), 0); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t), w.data() + w_elements * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), nr * sizeof(float), ¶ms, quantization_params.data() + m); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qp8_f32_qc4w_gemm_minmax_ukernel_fn gemm, xnn_init_f32_minmax_params_fn init_minmax_params, xnn_pack_weights_and_biases_fn pack_weights, xnn_packed_stride_weights_and_biases_fn packed_stride, size_t mr, size_t nr, size_t kr, size_t sr, size_t mr_packed, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = round_up(state.range(2), 2UL); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-10.0f, 10.0f), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES); std::generate(a.begin(), a.end(), std::ref(f32rng)); xnnpack::Buffer k(nc * kc / 2); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); // Create a fake `gemm_config` for the packing functions. struct xnn_gemm_config gemm_config; gemm_config.mr = static_cast(mr); gemm_config.mr_packed = static_cast(mr_packed); gemm_config.nr = static_cast(nr); gemm_config.log2_kr = static_cast(31 - math_clz_nonzero_u32(kr)); gemm_config.log2_sr = static_cast(31 - math_clz_nonzero_u32(sr)); const size_t packed_w_stride = packed_stride(&gemm_config, kc, /*k_stride=*/kc, /*extra_bytes=*/0); const size_t packed_w_size = packed_w_stride * round_up(nc, nr); const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (packed_w_size + c_elements)); xnnpack::Buffer w(packed_w_size * num_buffers); // Quantize the left-hand operand. const size_t input_packed_size = xnn_x8_packq_f32qp8_packed_size(mc, kc, mr_packed, kr, sr); xnnpack::Buffer input_qp8(input_packed_size); xnn_x8_packq_f32qp8_ukernel__scalar_u1(mc, kc, mr_packed, kr, sr, /*m_idx_start=*/0, a.data(), /*lhs_stride=*/kc * sizeof(float), input_qp8.data()); // RHS packing xnnpack::Buffer kernel_scale(nc, 1.0f); const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1, /*kernel_zero_point=*/8}; pack_weights(/*flags=*/0, &gemm_config, kc, nc, /*groups=*/1, /*k_stride=*/kc, /*accumulator_init=*/nullptr, /*weights=*/k.data(), /*int_extra_data0_fn=*/nullptr, /*extra_data0=*/nullptr, /*extra_data0_size=*/0, /*init_extra_data1_fn=*/ nullptr, /*extra_data1=*/kernel_scale.data(), /*extra_data1_size=*/sizeof(float), /*packed_weights_ptr=*/w.data(), &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f32_minmax_params minmax_params; init_minmax_params(&minmax_params, -std::numeric_limits::infinity(), std::numeric_limits::infinity()); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, input_qp8.data() + xnn_x8_packq_f32qp8_packed_offset(m, kc, mr, kr, sr), w.data() + packed_w_size * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), sizeof(float), &minmax_params); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter( static_cast(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qp8_f32_qb4w_gemm_minmax_ukernel_fn gemm, xnn_init_f32_qb4w_minmax_params_fn init_params, xnn_pack_weights_and_biases_fn pack_weights, xnn_packed_stride_weights_and_biases_fn packed_stride, size_t mr, size_t nr, size_t kr, size_t sr, size_t mr_packed, benchmark::utils::IsaCheckFunction isa_check) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t bl = state.range(3); const size_t kc = round_up(state.range(2), 2UL); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-10.0f, 10.0f), std::ref(rng)); auto scalerng = std::bind(std::uniform_real_distribution(0.5f, 2.f), std::ref(rng)); const size_t k2 = round_up_po2(kc, 2); // tester assumes byte aligned rows xnnpack::Buffer a(mc * k2); std::generate(a.begin(), a.end(), std::ref(f32rng)); xnnpack::Buffer k(nc * k2 / 2); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); // Create a fake `gemm_config` for the packing functions. struct xnn_gemm_config gemm_config; gemm_config.mr = static_cast(mr); gemm_config.mr_packed = static_cast(mr_packed); gemm_config.nr = static_cast(nr); gemm_config.log2_kr = static_cast(31 - math_clz_nonzero_u32(kr)); gemm_config.log2_sr = static_cast(31 - math_clz_nonzero_u32(sr)); const size_t packed_w_stride = packed_stride(&gemm_config, k2, /*k_stride=*/bl, /*extra_bytes=*/0); const size_t packed_w_size = packed_w_stride * round_up(nc, nr); const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (packed_w_size + c_elements)); xnnpack::Buffer w(packed_w_size * num_buffers); // Quantize the left-hand operand. const size_t input_packed_size = xnn_x8_packq_f32qp8_packed_size(mc, k2, mr_packed, kr, sr); xnnpack::Buffer input_qp8(input_packed_size); xnn_x8_packq_f32qp8_ukernel__scalar_u1(mc, k2, mr_packed, kr, sr, /*m_idx_start=*/0, a.data(), /*lhs_stride=*/k2 * sizeof(float), input_qp8.data()); // RHS packing xnnpack::Buffer kernel_scale2d(nc * k2 / bl); std::generate(kernel_scale2d.begin(), kernel_scale2d.end(), [&]() { return math_cvt_bf16_fp32(scalerng()); }); const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1, /*kernel_zero_point=*/8}; pack_weights(/*flags=*/0, &gemm_config, k2, nc, /*groups=*/1, /*k_stride=*/bl, /*accumulator_init=*/nullptr, /*weights=*/k.data(), /*int_extra_data0_fn=*/nullptr, /*extra_data0=*/nullptr, /*extra_data0_size=*/0, /*init_extra_data1_fn=*/ nullptr, /*extra_data1=*/kernel_scale2d.data(), /*extra_data1_size=*/sizeof(float), /*packed_weights_ptr=*/w.data(), &packing_params); xnnpack::Buffer c(c_elements * num_buffers); // Prepare parameters. xnn_f32_qb4w_minmax_params minmax_params; init_params(&minmax_params, std::numeric_limits::min(), std::numeric_limits::max(), 8, bl); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size()); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc, input_qp8.data() + xnn_x8_packq_f32qp8_packed_offset(m, kc, mr, kr, sr), w.data() + packed_w_size * buffer_index, c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), sizeof(float), &minmax_params); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter( static_cast(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_qu8_gemm_minmax_ukernel_fn gemm, xnn_init_qu8_conv_minmax_params_fn init_params, xnn_pack_qu8_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(uint8_t)); xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng); xnnpack::Buffer k(nc * kc); xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng); xnnpack::Buffer b(nc); std::generate(b.begin(), b.end(), std::ref(i32rng)); const size_t w_elements = kc_stride * nc_stride + nc_stride * sizeof(int32_t) / sizeof(uint8_t); const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(uint8_t) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); const xnn_qu8_packing_params packing_params = {127, 127}; pack(/*groups=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr, w.data(), /*extra_bytes=*/0, &packing_params); xnnpack::Buffer c(c_elements * num_buffers); union xnn_qu8_conv_minmax_params quantization_params; init_params(&quantization_params, 127, 0.75f, 127, 1, 254); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint8_t)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); for (uint32_t n = 0; n < nc; n += nr) { const uint32_t nb = min(nc - n, nr); gemm(mb, nb, kc * sizeof(uint8_t), a.data() + m * kc, kc * sizeof(uint8_t), w.data() + (w_elements * buffer_index + n * (kc_stride + sizeof(int32_t))) / sizeof(uint8_t), c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint8_t), nr * sizeof(uint8_t), &quantization_params); } } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["OPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_f32_gemm_minmax_ukernel_fn gemm, xnn_init_f32_minmax_params_fn init_params, xnn_pack_f32_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(float)); std::generate(a.begin(), a.end(), std::ref(f32rng)); xnnpack::Buffer k(nc * kc); std::generate(k.begin(), k.end(), std::ref(f32rng)); xnnpack::Buffer b(nc); std::generate(b.begin(), b.end(), std::ref(f32rng)); const size_t w_elements = nc_stride * kc_stride + nc_stride; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); pack(/*groups=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr, w.data(), /*extra_bytes=*/0, /*params=*/nullptr); xnnpack::Buffer c(c_elements * num_buffers); xnn_f32_minmax_params params; init_params(¶ms, -std::numeric_limits::infinity(), +std::numeric_limits::infinity()); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc * sizeof(float), a.data() + m * kc, kc * sizeof(float), w.data() + buffer_index * nc_stride * (kc_stride + 1), c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), nr * sizeof(float), ¶ms); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_f32_gemm_minmax_ukernel_fn gemm, xnn_init_f32_minmax_params_fn init_params, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(float)); std::generate(a.begin(), a.end(), std::ref(f32rng)); const size_t k_elements = nc * kc; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(float) * (k_elements + c_elements)); xnnpack::Buffer k(k_elements * num_buffers); xnnpack::Buffer c(c_elements * num_buffers); std::generate(k.begin(), k.end(), std::ref(f32rng)); xnn_f32_minmax_params params; init_params(¶ms, -std::numeric_limits::infinity(), +std::numeric_limits::infinity()); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - K is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); gemm(mb, nc, kc * sizeof(float), a.data() + m * kc, kc * sizeof(float), k.data() + (buffer_index * k_elements), c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), nr * sizeof(float), ¶ms); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } void GEMMBenchmark(benchmark::State& state, xnn_f16_gemm_minmax_ukernel_fn gemm, xnn_init_f16_minmax_params_fn init_params, xnn_pack_f16_gemm_fn pack, size_t mr, size_t nr, size_t kr, size_t sr, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); xnnpack::Buffer a(mc * kc + XNN_EXTRA_BYTES / sizeof(xnn_float16)); std::generate(a.begin(), a.end(), f32rng); xnnpack::Buffer k(nc * kc); std::generate(k.begin(), k.end(), f32rng); xnnpack::Buffer b(nc); std::generate(b.begin(), b.end(), f32rng); const size_t w_elements = nc_stride * kc_stride + nc_stride; const size_t c_elements = mc * nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp( benchmark::utils::GetMaxCacheSize(), sizeof(xnn_float16) * (w_elements + c_elements)); xnnpack::Buffer w(w_elements * num_buffers); pack(/*groups=*/1, nc, kc, nr, kr, sr, reinterpret_cast(k.data()), reinterpret_cast(b.data()), /*scale=*/nullptr, reinterpret_cast(w.data()), /*extra_bytes=*/0, /*params=*/nullptr); xnnpack::Buffer c(c_elements * num_buffers); // Prepare minmax parameters. xnn_f16_minmax_params params; init_params(¶ms, static_cast(-INFINITY), static_cast(INFINITY)); size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache // state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(xnn_float16)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < mc; m += mr) { const uint32_t mb = min(mc - m, mr); for (uint32_t n = 0; n < nc; n += nr) { const uint32_t nb = min(nc - n, nr); gemm(mb, nb, kc * sizeof(xnn_float16), a.data() + m * kc, kc * sizeof(xnn_float16), w.data() + (nc_stride * buffer_index + n) * (kc_stride + 1), c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(xnn_float16), nr * sizeof(xnn_float16), ¶ms); } } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); }