// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/common.h" #include "xnnpack/node-type.h" #include "xnnpack/operator.h" #include "xnnpack/subgraph.h" #include "xnnpack/buffer.h" #include "replicable_random_device.h" namespace { inline size_t compute_output_dimension(size_t padded_input_dimension, size_t kernel_dimension) { return padded_input_dimension / kernel_dimension; } } // namespace class ArgmaxPoolingTestF32 : public ::testing::Test { protected: ArgmaxPoolingTestF32() { input_size_dist = std::uniform_int_distribution(10, 15); pooling_size_dist = std::uniform_int_distribution(2, 5); batch_size = input_size_dist(rng); input_height = input_size_dist(rng); input_width = input_size_dist(rng); channels = input_size_dist(rng); pooling_height = pooling_size_dist(rng); pooling_width = pooling_size_dist(rng); input_padding_top = input_size_dist(rng); input_padding_right = input_size_dist(rng); input_padding_bottom = input_size_dist(rng); input_padding_left = input_size_dist(rng); output_height = compute_output_dimension(input_height + input_padding_top + input_padding_bottom, pooling_height); output_width = compute_output_dimension(input_width + input_padding_left + input_padding_right, pooling_width); input_dims = {batch_size, input_height, input_width, channels}; output_dims = {batch_size, output_height, output_width, channels}; input = xnnpack::Buffer(XNN_EXTRA_BYTES / sizeof(float) + batch_size * input_height * input_width * channels); operator_output = xnnpack::Buffer(batch_size * output_height * output_width * channels); operator_output_index = xnnpack::Buffer(batch_size * output_height * output_width * channels); subgraph_output = xnnpack::Buffer(batch_size * output_height * output_width * channels); subgraph_output_index = xnnpack::Buffer(batch_size * output_height * output_width * channels); } xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution pooling_size_dist; uint32_t batch_size; uint32_t input_height; uint32_t input_width; uint32_t channels; uint32_t pooling_height; uint32_t pooling_width; uint32_t output_height; uint32_t output_width; std::array input_dims; std::array output_dims; uint32_t input_padding_top; uint32_t input_padding_right; uint32_t input_padding_bottom; uint32_t input_padding_left; uint32_t input_id; uint32_t output_value_id; uint32_t output_index_id; xnnpack::Buffer input; xnnpack::Buffer operator_output; xnnpack::Buffer operator_output_index; xnnpack::Buffer subgraph_output; xnnpack::Buffer subgraph_output_index; }; TEST_F(ArgmaxPoolingTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_value_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id)); ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID); output_index_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id)); ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_argmax_pooling_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, input_id, output_value_id, output_index_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_argmax_pooling_2d); ASSERT_EQ(node->params.pooling_2d.padding_top, input_padding_top); ASSERT_EQ(node->params.pooling_2d.padding_right, input_padding_right); ASSERT_EQ(node->params.pooling_2d.padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.pooling_2d.padding_left, input_padding_left); ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 2); ASSERT_EQ(node->outputs[0], output_value_id); ASSERT_EQ(node->outputs[1], output_index_id); ASSERT_EQ(node->flags, 0); } TEST_F(ArgmaxPoolingTestF32, matches_operator_api) { std::uniform_real_distribution f32dist(-255.0f, 255.0f); std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_argmax_pooling2d_nhwc_f32( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, /*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); size_t workspace_size = 0; size_t workspace_alignment = 0; ASSERT_EQ( xnn_status_success, xnn_reshape_argmax_pooling2d_nhwc_f32( op, batch_size, input_height, input_width, /*channels=*/channels, /*input_pixel_stride=*/channels, /*output_pixel_stride=*/channels, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); xnnpack::Buffer workspace(workspace_size); ASSERT_EQ( xnn_status_success, xnn_setup_argmax_pooling2d_nhwc_f32( op, workspace.data(), input.data(), operator_output.data(), operator_output_index.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_value_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id)); ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID); output_index_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id)); ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID); xnn_runtime_t runtime = nullptr; ASSERT_EQ( xnn_status_success, xnn_define_argmax_pooling_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, input_id, output_value_id, output_index_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_value_id, subgraph_output.data()}, xnn_external_value{output_index_id, subgraph_output_index.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(ArgmaxPoolingTestF32, reshape_output) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); std::vector dims{2, 3, 4, 5}; std::vector output_dims{2, 3, 5, 5}; uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_value_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id)); ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID); output_index_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id)); ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID); const size_t pooling_height = 2; const size_t pooling_width = 2; ASSERT_EQ(xnn_status_success, xnn_define_argmax_pooling_2d( subgraph, /*input_padding_top=*/3, /*input_padding_right=*/2, /*input_padding_bottom=*/1, /*input_padding_left=*/4, pooling_height, pooling_width, input_id, output_value_id, output_index_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_argmax_pooling_2d); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 2); ASSERT_EQ(node->outputs[0], output_value_id); ASSERT_EQ(node->outputs[1], output_index_id); ASSERT_EQ(node->flags, 0); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); ASSERT_EQ(node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); dims[0] = 2; dims[1] = 2; dims[2] = 8; dims[3] = 17; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, 0, dims.size(), dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; ASSERT_EQ(output_shape->dim[0], dims[0]); ASSERT_EQ(output_shape->dim[1], 3); ASSERT_EQ(output_shape->dim[2], 7); ASSERT_EQ(output_shape->dim[3], dims[3]); }