// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::min. #include // For std::array. #include // For std::lrintf. #include // For size_t. #include // For uint32_t. #include // For std::numeric_limits. #include // For std::unique_ptr. #include // For std::uniform_real_distribution. #include // For std::vector. #include #include "xnnpack.h" #include "xnnpack/buffer.h" #include "xnnpack/common.h" #include "xnnpack/math.h" #include "xnnpack/node-type.h" #include "xnnpack/operator-utils.h" #include "xnnpack/operator.h" #include "xnnpack/requantization.h" #include "xnnpack/subgraph.h" #include "convolution-test-helpers.h" #include "replicable_random_device.h" namespace xnnpack { template class ConvolutionTestBase : public ::testing::Test { protected: ConvolutionTestBase() { input_size_dist = std::uniform_int_distribution(10, 15); kernel_size_dist = std::uniform_int_distribution(1, 5); subsampling_dist = std::uniform_int_distribution(1, 5); // max value of (dilation * kernel size) must be smaller than input size. dilation_dist = std::uniform_int_distribution(1, 2); f32dist = std::uniform_real_distribution(0.1f, 1.0f); scale_dist = std::uniform_real_distribution(1.0f, 5.0f); i32dist = std::uniform_int_distribution(-10000, 10000); batch_size = input_size_dist(rng); input_height = input_size_dist(rng); input_width = input_size_dist(rng); kernel_height = kernel_size_dist(rng); kernel_width = kernel_size_dist(rng); subsampling_height = subsampling_dist(rng); subsampling_width = subsampling_dist(rng); dilation_height = dilation_dist(rng); dilation_width = dilation_dist(rng); groups = input_size_dist(rng); group_input_channels = input_size_dist(rng); group_output_channels = input_size_dist(rng); output_min = -std::numeric_limits::infinity(); output_max = std::numeric_limits::infinity(); output_height = xnn_compute_convolution_output_dimension( input_height, kernel_height, dilation_height, subsampling_height); output_width = xnn_compute_convolution_output_dimension( input_width, kernel_width, dilation_width, subsampling_width); input_dims = { {batch_size, input_height, input_width, groups * group_input_channels}}; filter_dims = {{groups * group_output_channels, kernel_height, kernel_width, group_input_channels}}; bias_dims = {{groups * group_output_channels}}; output_dims = {{batch_size, output_height, output_width, groups * group_output_channels}}; input = xnnpack::Buffer(XNN_EXTRA_BYTES / sizeof(InputType) + batch_size * input_height * input_width * groups * group_input_channels); filter = xnnpack::Buffer(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); bias = xnnpack::Buffer(groups * group_output_channels); operator_output = xnnpack::Buffer(batch_size * output_height * output_width * groups * group_output_channels); subgraph_output = xnnpack::Buffer(batch_size * output_height * output_width * groups * group_output_channels); } xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution kernel_size_dist; std::uniform_int_distribution subsampling_dist; std::uniform_int_distribution dilation_dist; std::uniform_int_distribution i32dist; std::uniform_real_distribution f32dist; std::uniform_real_distribution scale_dist; const uint32_t input_padding_top = 0; const uint32_t input_padding_right = 0; const uint32_t input_padding_bottom = 0; const uint32_t input_padding_left = 0; uint32_t batch_size; uint32_t input_height; uint32_t input_width; uint32_t kernel_height; uint32_t kernel_width; uint32_t subsampling_height; uint32_t subsampling_width; uint32_t dilation_height; uint32_t dilation_width; uint32_t groups; uint32_t group_input_channels; uint32_t group_output_channels; float output_min; float output_max; uint32_t output_height; uint32_t output_width; std::array input_dims; std::array filter_dims; std::array bias_dims; std::array output_dims; xnnpack::Buffer input; xnnpack::Buffer filter; xnnpack::Buffer bias; xnnpack::Buffer operator_output; xnnpack::Buffer subgraph_output; }; template class QuantizedConvolutionTestBase : public ConvolutionTestBase { protected: QuantizedConvolutionTestBase() { i8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); w8dist = std::uniform_int_distribution(-std::numeric_limits::max(), std::numeric_limits::max()); std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); accumulators = xnnpack::Buffer( this->batch_size * this->output_height * this->output_width * this->groups * this->group_output_channels); } std::uniform_int_distribution i8dist; std::uniform_int_distribution u8dist; std::uniform_int_distribution w8dist; xnnpack::Buffer accumulators; }; using ConvolutionTestQC8 = QuantizedConvolutionTestBase; using ConvolutionTestQD8F16QC8W = QuantizedConvolutionTestBase; using ConvolutionTestQD8F32QC8W = QuantizedConvolutionTestBase; using ConvolutionTestQS8 = QuantizedConvolutionTestBase; using ConvolutionTestQU8 = QuantizedConvolutionTestBase; using ConvolutionTestF16 = ConvolutionTestBase; using ConvolutionTestF32 = ConvolutionTestBase; TEST_F(ConvolutionTestQC8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); xnnpack::Buffer scale(groups * group_output_channels, 1.0f); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, scale.data(), filter_dims.size(), 0, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint32, scale.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.convolution_2d.groups, groups); ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestQD8F16QC8W, define) { xnnpack::Buffer requantization_scales(group_output_channels * groups, 1.0f); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_dynamically_quantized_tensor_value( subgraph, xnn_datatype_qdint8, input_dims.size(), /*num_nonbatch_dims=*/1, input_dims.data(), /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_VALUE_ID); uint32_t kernel_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), /*channel_dim=*/0, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_VALUE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestQD8F16QC8W, internally_allocated_dynamic_quantization_parameters) { xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; xnnpack::Buffer convert_input(batch_size * input_height * input_width * groups * group_input_channels + XNN_EXTRA_BYTES / sizeof(xnn_float16)); xnnpack::Buffer operator_dq_data(batch_size * input_height * input_width * groups * group_input_channels + XNN_EXTRA_BYTES); xnnpack::Buffer quantization_params(batch_size + XNN_EXTRA_QUANTIZATION_PARAMS); xnnpack::Buffer kernel_scale(group_output_channels * groups); std::generate(kernel_scale.begin(), kernel_scale.end(), [&]() { return scale_dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::generate(convert_input.begin(), convert_input.end(), [&]() { return f32dist(rng); }); const float output_min = -std::numeric_limits::infinity(); const float output_max = std::numeric_limits::infinity(); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; // Call operator API. xnn_operator_t convert_op = nullptr; xnn_operator_t convolution_op = nullptr; const size_t quantized_batch_size = input_height * input_width * group_input_channels * groups; xnn_status status = xnn_create_convert_nc_f16_qd8( /*flags=*/0, &convert_op); std::unique_ptr auto_convert_op(convert_op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convert_op); ASSERT_EQ(xnn_status_success, xnn_reshape_convert_nc_f16_qd8(convert_op, batch_size, quantized_batch_size, quantized_batch_size, quantized_batch_size, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_convert_nc_f16_qd8(convert_op, convert_input.data(), operator_dq_data.data(), quantization_params.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(convert_op, /*threadpool=*/nullptr)); status = xnn_create_convolution2d_nhwc_qd8_f16_qc8w( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, kernel_scale.data(), filter.data(), bias.data(), output_min, output_max, /*flags=*/0, nullptr, nullptr, &convolution_op); std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_qd8_f16_qc8w( convolution_op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qd8_f16_qc8w(convolution_op, /*workspace=*/nullptr, operator_dq_data.data(), operator_output.data(), quantization_params.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, /*threadpool=*/nullptr)); // Call subgraph API. ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t dq_quantized_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_dynamically_quantized_tensor_value( subgraph, xnn_datatype_qdint8, input_dims.size(), /*num_nonbatch_dims=*/3, input_dims.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &dq_quantized_id)); ASSERT_NE(dq_quantized_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, kernel_scale.data(), filter_dims.size(), /*channel_dim=*/0, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_define_unary(subgraph, xnn_unary_convert, /*params=*/nullptr, input_id, dq_quantized_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, dq_quantized_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, convert_input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(ConvolutionTestQD8F32QC8W, define) { xnnpack::Buffer requantization_scales(group_output_channels * groups, 1.0f); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_dynamically_quantized_tensor_value( subgraph, xnn_datatype_qdint8, input_dims.size(), /*num_nonbatch_dims=*/1, input_dims.data(), /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_VALUE_ID); uint32_t kernel_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), /*channel_dim=*/0, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_VALUE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestQD8F32QC8W, internally_allocated_dynamic_quantization_parameters) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; xnnpack::Buffer convert_input(batch_size * input_height * input_width * groups * group_input_channels + XNN_EXTRA_BYTES / sizeof(float)); xnnpack::Buffer operator_dq_data(batch_size * input_height * input_width * groups * group_input_channels + XNN_EXTRA_BYTES); xnnpack::Buffer quantization_params(batch_size + XNN_EXTRA_QUANTIZATION_PARAMS); xnnpack::Buffer kernel_scale(group_output_channels * groups); std::generate(kernel_scale.begin(), kernel_scale.end(), [&]() { return scale_dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::generate(convert_input.begin(), convert_input.end(), [&]() { return f32dist(rng); }); const float output_min = -std::numeric_limits::infinity(); const float output_max = std::numeric_limits::infinity(); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; // Call operator API. xnn_operator_t convert_op = nullptr; xnn_operator_t convolution_op = nullptr; const size_t quantized_batch_size = input_height * input_width * group_input_channels * groups; xnn_status status = xnn_create_convert_nc_f32_qd8( /*flags=*/0, &convert_op); std::unique_ptr auto_convert_op(convert_op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convert_op); ASSERT_EQ(xnn_status_success, xnn_reshape_convert_nc_f32_qd8(convert_op, batch_size, quantized_batch_size, quantized_batch_size, quantized_batch_size, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_convert_nc_f32_qd8(convert_op, convert_input.data(), operator_dq_data.data(), quantization_params.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(convert_op, /*threadpool=*/nullptr)); status = xnn_create_convolution2d_nhwc_qd8_f32_qc8w( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, kernel_scale.data(), filter.data(), bias.data(), output_min, output_max, /*flags=*/0, nullptr, nullptr, &convolution_op); std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_qd8_f32_qc8w( convolution_op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qd8_f32_qc8w(convolution_op, /*workspace=*/nullptr, operator_dq_data.data(), operator_output.data(), quantization_params.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, /*threadpool=*/nullptr)); // Call subgraph API. ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t dq_quantized_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_dynamically_quantized_tensor_value( subgraph, xnn_datatype_qdint8, input_dims.size(), /*num_nonbatch_dims=*/3, input_dims.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &dq_quantized_id)); ASSERT_NE(dq_quantized_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, kernel_scale.data(), filter_dims.size(), /*channel_dim=*/0, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_define_unary(subgraph, xnn_unary_convert, /*params=*/nullptr, input_id, dq_quantized_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, dq_quantized_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, convert_input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(ConvolutionTestQS8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.convolution_2d.groups, groups); ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestQU8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.convolution_2d.groups, groups); ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestF16, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.convolution_2d.groups, groups); ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_convolution_2d); ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.convolution_2d.groups, groups); ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(ConvolutionTestQC8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); xnnpack::Buffer requantization_scales(groups * group_output_channels); const int8_t input_zero_point = i8dist(rng); const int8_t output_zero_point = i8dist(rng); const float input_scale = scale_dist(rng); const float output_scale = scale_dist(rng); const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); compute_convolution_qs8_reference_results( batch_size, output_height, output_width, input_height, input_width, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, input_zero_point, input, filter, accumulators, /*has_bias=*/true, bias); // Compute renormalization parameters. for (size_t c = 0; c < groups * group_output_channels; c++) { int32_t accumulated_min = accumulators[c]; int32_t accumulated_max = accumulators[c]; for (size_t px = 0; px < batch_size * output_height * output_width; px++) { accumulated_min = std::min(accumulated_min, accumulators[px * groups * group_output_channels + c]); accumulated_max = std::max(accumulated_max, accumulators[px * groups * group_output_channels + c]); } float requantization_scale = 0x1.0p-32f; if (accumulated_max != 0) { requantization_scale = std::max( requantization_scale, float(int32_t(std::numeric_limits::max()) - int32_t(output_zero_point)) / float(accumulated_max)); } if (accumulated_min != 0) { requantization_scale = std::max( requantization_scale, float(int32_t(std::numeric_limits::min()) - int32_t(output_zero_point)) / float(accumulated_min)); } requantization_scale = std::min(requantization_scale, 0x1.FFFFFEp-1f); requantization_scales[c] = requantization_scale; } // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_qs8_qc8w( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale, requantization_scales.data(), filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_qs8_qc8w( op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(workspace_size, 0); ASSERT_EQ(workspace_alignment, 1); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qs8_qc8w(op, /*workspace=*/nullptr, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), 0, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint32, requantization_scales.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(ConvolutionTestQS8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); const int8_t input_zero_point = -1; const float input_scale = scale_dist(rng); const float kernel_scale = scale_dist(rng); compute_convolution_qs8_reference_results( batch_size, output_height, output_width, input_height, input_width, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, input_zero_point, input, filter, accumulators, /*has_bias=*/true, bias); // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; int8_t output_zero_point = int8_t(std::max( std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_qs8( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_qs8( op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(workspace_size, 0); ASSERT_EQ(workspace_alignment, 1); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qs8(op, /*workspace=*/nullptr, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(ConvolutionTestQU8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return u8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); const uint8_t input_zero_point = u8dist(rng); const uint8_t kernel_zero_point = 0; const float input_scale = scale_dist(rng); const float kernel_scale = scale_dist(rng); // Compute reference results, without renormalization. compute_convolution_qu8_reference_results( batch_size, output_height, output_width, input_height, input_width, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, input_zero_point, kernel_zero_point, input, filter, accumulators, /*has_bias=*/true, bias); // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max( std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_qu8( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale, kernel_zero_point, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_qu8( op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(workspace_size, 0); ASSERT_EQ(workspace_alignment, 1); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qu8(op, /*workspace=*/nullptr, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(ConvolutionTestF16, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_f16( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, filter.data(), bias.data(), output_min, output_max, XNN_FLAG_FP32_STATIC_WEIGHTS, nullptr, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_f16( op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(workspace_size, 0); ASSERT_EQ(workspace_alignment, 1); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f16(op, /*workspace=*/nullptr, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(ConvolutionTestF32, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_f32( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, filter.data(), bias.data(), output_min, output_max, /*flags=*/0, nullptr, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_f32( op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ(workspace_size, 0); ASSERT_EQ(workspace_alignment, 1); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f32(op, /*workspace=*/nullptr, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(ConvolutionTestF32, transient_indirection_buffer) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_f32( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, filter.data(), bias.data(), output_min, output_max, /*flags=*/XNN_FLAG_TRANSIENT_INDIRECTION_BUFFER, nullptr, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); size_t workspace_size = SIZE_MAX; size_t workspace_alignment = SIZE_MAX; ASSERT_EQ( xnn_status_success, xnn_reshape_convolution2d_nhwc_f32( op, batch_size, input_height, input_width, &workspace_size, &workspace_alignment, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); // workspace_size might be 0 if we hit the vmulcaddc path which does not require any indirection buffers. ASSERT_NE(workspace_size, SIZE_MAX); ASSERT_NE(workspace_alignment, SIZE_MAX); xnnpack::Buffer workspace(workspace_size); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f32(op, workspace.data(), input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/XNN_FLAG_TRANSIENT_INDIRECTION_BUFFER)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(ConvolutionTestF32, reshape_output) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); input_dims[0] += 2; input_dims[1] += 3; input_dims[2] += 4; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, input_dims.size(), input_dims.data())); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; ASSERT_EQ(output_shape->dim[0], input_dims[0]); ASSERT_EQ(output_shape->dim[1], runtime->opdata[0].operator_objects[0]->output_height); ASSERT_EQ(output_shape->dim[2], runtime->opdata[0].operator_objects[0]->output_width); ASSERT_EQ(output_shape->dim[3], output_dims[3]); input_dims[0] -= 1; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, input_dims.size(), input_dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success); ASSERT_EQ(output_shape->dim[0], input_dims[0]); ASSERT_EQ(output_shape->dim[1], runtime->opdata[0].operator_objects[0]->output_height); ASSERT_EQ(output_shape->dim[2], runtime->opdata[0].operator_objects[0]->output_width); ASSERT_EQ(output_shape->dim[3], output_dims[3]); } } // namespace xnnpack