// Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::min. #include // For std::array. #include // For std::lrintf. #include // For size_t. #include // For uint32_t. #include // For std::unique_ptr. #include // For std::uniform_real_distribution. #include // For std::vector. #include #include "xnnpack.h" #include "xnnpack/math.h" #include "xnnpack/node-type.h" #include "xnnpack/operator.h" #include "xnnpack/subgraph.h" #include "xnnpack/buffer.h" #include "replicable_random_device.h" template class RoPETestBase : public ::testing::Test { protected: RoPETestBase() { f32dist = std::uniform_real_distribution(0.1f, 1.0f); dim_dist = std::uniform_int_distribution(5, 15); batch_size = dim_dist(rng); tokens = dim_dist(rng); do { max_tokens = dim_dist(rng); } while (max_tokens < tokens); heads = dim_dist(rng); channels = dim_dist(rng) * 2; // ensure the number of channels is even input = xnnpack::Buffer(XNN_EXTRA_BYTES / sizeof(T) + batch_size * tokens * heads * channels); weights = xnnpack::Buffer(XNN_EXTRA_BYTES / sizeof(T) + max_tokens * channels); operator_output = xnnpack::Buffer(batch_size * tokens * heads * channels); subgraph_output = xnnpack::Buffer(operator_output.size()); } xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist; std::uniform_int_distribution dim_dist; size_t batch_size; size_t max_tokens; size_t tokens; size_t heads; size_t channels; xnnpack::Buffer input; xnnpack::Buffer weights; xnnpack::Buffer operator_output; xnnpack::Buffer subgraph_output; }; using RoPETestF16 = RoPETestBase; using RoPETestF32 = RoPETestBase; TEST_F(RoPETestF16, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; const std::array input_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(), /*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t weights_id = XNN_INVALID_NODE_ID; const std::array weights_dims{{max_tokens, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp16, weights_dims.size(), weights_dims.data(), weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id)); uint32_t output_id = XNN_INVALID_NODE_ID; const std::array output_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_rope); ASSERT_EQ(node->num_inputs, 2); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], weights_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(RoPETestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; const std::array input_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), /*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t weights_id = XNN_INVALID_NODE_ID; const std::array weights_dims{{max_tokens, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp32, weights_dims.size(), weights_dims.data(), weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id)); uint32_t output_id = XNN_INVALID_NODE_ID; const std::array output_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_rope); ASSERT_EQ(node->num_inputs, 2); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], weights_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(RoPETestF16, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(weights.begin(), weights.end(), [&]() { return f32dist(rng); }); const xnn_status status = xnn_create_rope_nthc_f16(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_reshape_rope_nthc_f16(op, batch_size, tokens, heads, channels, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_rope_nthc_f16(op, input.data(), weights.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; const std::array input_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(), /*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t weights_id = XNN_INVALID_NODE_ID; const std::array weights_dims{{max_tokens, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp16, weights_dims.size(), weights_dims.data(), weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id)); uint32_t output_id = XNN_INVALID_NODE_ID; const std::array output_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), /*data=*/nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); const std::array external{{ xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()} }}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(RoPETestF32, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(weights.begin(), weights.end(), [&]() { return f32dist(rng); }); const xnn_status status = xnn_create_rope_nthc_f32(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_reshape_rope_nthc_f32(op, batch_size, tokens, heads, channels, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_rope_nthc_f32(op, input.data(), weights.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; const std::array input_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), /*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t weights_id = XNN_INVALID_NODE_ID; const std::array weights_dims{{max_tokens, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp32, weights_dims.size(), weights_dims.data(), weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id)); uint32_t output_id = XNN_INVALID_NODE_ID; const std::array output_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), /*data=*/nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); const std::array external{{ xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()} }}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(RoPETestF32, reshape_output) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; std::array input_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), /*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t weights_id = XNN_INVALID_NODE_ID; const std::array weights_dims{{max_tokens, channels}}; ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, xnn_datatype_fp32, weights_dims.size(), weights_dims.data(), weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id)); uint32_t output_id = XNN_INVALID_NODE_ID; const std::array output_dims{{batch_size, tokens, heads, channels}}; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), /*data=*/nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); const std::array external{{ xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()} }}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); input_dims[0] += 4; input_dims[2] += 4; input_dims[3] += 4; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, input_dims.size(), input_dims.data())); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; for (size_t i = 0; i < input_dims.size(); ++i) { ASSERT_EQ(output_shape->dim[i], input_dims[i]); } input_dims[3] -= 4; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, input_dims.size(), input_dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success); for (size_t i = 0; i < input_dims.size(); ++i) { ASSERT_EQ(output_shape->dim[i], input_dims[i]); } }