// Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/buffer.h" #include "xnnpack/math.h" #include "xnnpack/microfnptr.h" #include "xnnpack/microparams.h" #include "xnnpack/requantization.h" #include "replicable_random_device.h" class RSumMicrokernelTester { public: RSumMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } size_t batch_size() const { return this->batch_size_; } RSumMicrokernelTester& scale(float scale) { this->scale_ = scale; return *this; } float scale() const { return this->scale_; } RSumMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } size_t iterations() const { return this->iterations_; } RSumMicrokernelTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } float input_scale() const { return this->input_scale_; } RSumMicrokernelTester& output_scale(float output_scale) { assert(output_scale > 0.0f); assert(std::isnormal(output_scale)); this->output_scale_ = output_scale; return *this; } float output_scale() const { return this->output_scale_; } RSumMicrokernelTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } uint8_t input_zero_point() const { return this->input_zero_point_; } RSumMicrokernelTester& output_zero_point(uint8_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } uint8_t output_zero_point() const { return this->output_zero_point_; } uint8_t qmin() const { return this->qmin_; } uint8_t qmax() const { return this->qmax_; } void Test(xnn_qs8_rsum_ukernel_fn rsum, xnn_init_qs8_rsum_params_fn init_params = nullptr) const { xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution i8dist( std::numeric_limits::min(), std::numeric_limits::max()); xnnpack::Buffer input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); // Compute reference results. int32_t output_init = i8dist(rng); int32_t output_ref = output_init; for (size_t i = 0; i < batch_size(); i++) { output_ref += int32_t(input[i]); } // Prepare parameters struct xnn_qs8_rsum_params params; if (init_params) { init_params(¶ms); } // Call optimized micro-kernel. int32_t output = output_init; rsum(batch_size() * sizeof(int8_t), input.data(), &output, ¶ms); // Verify results. EXPECT_EQ(output_ref, output); } } void Test(xnn_qu8_rsum_ukernel_fn rsum, xnn_init_qs8_rsum_params_fn init_params = nullptr) const { xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); xnnpack::Buffer input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); // Compute reference results. // The accumulator is not initialized to zero to verify that the // microkernel doesn't overwrite the output. uint32_t output_init = u8dist(rng); uint32_t output_ref = output_init; for (size_t i = 0; i < batch_size(); i++) { output_ref += uint32_t(input[i]); } // Prepare parameters struct xnn_qs8_rsum_params params; if (init_params) { init_params(¶ms); } // Call optimized micro-kernel. uint32_t output = output_init; rsum(batch_size() * sizeof(uint8_t), input.data(), &output, ¶ms); // Verify results. EXPECT_EQ(output_ref, output); } } void Test(xnn_f16_rsum_ukernel_fn rsum, xnn_init_f16_scale_params_fn init_params) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist(0.01f, 1.0f); xnnpack::Buffer input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16)); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); // Compute reference results. float output_ref = 0.0f; for (size_t i = 0; i < batch_size(); i++) { output_ref += input[i]; } output_ref *= scale(); // Prepare parameters. xnn_f16_scale_params params; init_params(¶ms, static_cast(scale())); // Call optimized micro-kernel. xnn_float16 output; rsum(batch_size() * sizeof(xnn_float16), input.data(), &output, ¶ms); // Verify results. EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 4.0e-3f) << "with batch " << batch_size() << ", scale " << scale(); } } void Test(xnn_f16_f32acc_rsum_ukernel_fn rsum, xnn_init_f16_f32acc_scale_params_fn init_params) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist(0.01f, 1.0f); xnnpack::Buffer input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16)); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); // Compute reference results. float output_ref = 0.0f; for (size_t i = 0; i < batch_size(); i++) { output_ref += input[i]; } output_ref *= scale(); // Prepare parameters. xnn_f16_f32acc_scale_params params; init_params(¶ms, scale()); // Call optimized micro-kernel. float output = 0.f; rsum(batch_size() * sizeof(xnn_float16), input.data(), &output, ¶ms); // Verify results. EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 1.0e-5f) << "with batch " << batch_size() << ", scale " << scale(); } } void Test(xnn_f32_rsum_ukernel_fn rsum, xnn_init_f32_scale_params_fn init_params) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist(0.01f, 1.0f); xnnpack::Buffer input(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); // Compute reference results. const double output_ref = std::accumulate(input.begin(), input.begin() + batch_size(), 0.0) * static_cast(scale()); // Prepare parameters. xnn_f32_scale_params params; init_params(¶ms, scale()); // Call optimized micro-kernel. float output = 0.f; rsum(batch_size() * sizeof(float), input.data(), &output, ¶ms); // Verify results. EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 1.0e-6f) << "with batch " << batch_size() << ", scale " << scale(); } } private: size_t batch_size_{1}; float scale_{1.0f}; size_t iterations_{15}; float input_scale_{1.25f}; float output_scale_{0.75f}; uint8_t input_zero_point_{121}; uint8_t output_zero_point_{133}; uint8_t qmin_{0}; uint8_t qmax_{255}; };