// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/math.h" #include "xnnpack/node-type.h" #include "xnnpack/operator.h" #include "xnnpack/subgraph.h" #include "subgraph-unary-tester.h" using SoftmaxTestF16 = UnaryTest; using SoftmaxTestF32 = UnaryTest; TEST_F(SoftmaxTestF16, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_softmax); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(SoftmaxTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_softmax); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(SoftmaxTestF16, matches_operator_api) { // Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't. // However, the range is still narrow enough that single-precision exp doesn't overflow. std::uniform_real_distribution f32dist(90.0f, 100.0f); std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_softmax_nc_f16(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_reshape_softmax_nc_f16(op, channels, channels, channels, batch_size, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_softmax_nc_f16(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); for (size_t i = 0; i < num_output_elements; i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]) << "element " << i << " / " << num_output_elements; } } TEST_F(SoftmaxTestF32, matches_operator_api) { // Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't. // However, the range is still narrow enough that single-precision exp doesn't overflow. std::uniform_real_distribution f32dist(90.0f, 100.0f); std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_softmax_nc_f32(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_reshape_softmax_nc_f32(op, channels, channels, channels, batch_size, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_softmax_nc_f32(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); for (size_t i = 0; i < num_output_elements; i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]) << "element " << i << " / " << num_output_elements; } } TEST_F(SoftmaxTestF32, reshape_output) { // Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't. // However, the range is still narrow enough that single-precision exp doesn't overflow. std::uniform_real_distribution f32dist(90.0f, 100.0f); std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); const std::array external{{ xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()} }}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); dims[0] += 4; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, dims.size(), dims.data())); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; for (size_t i = 0; i < dims.size(); ++i) { ASSERT_EQ(dims[i], output_shape->dim[i]); } dims[0] -= 4; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, dims.size(), dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success); output_shape = &runtime->values[node->outputs[0]].shape; for (size_t i = 0; i < dims.size(); ++i) { ASSERT_EQ(dims[i], output_shape->dim[i]); } }