// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/math.h" #include "xnnpack/node-type.h" #include "xnnpack/operator.h" #include "xnnpack/subgraph.h" #include "replicable_random_device.h" #include "subgraph-unary-tester.h" template class StaticSliceTest : public UnaryTest { public: StaticSliceTest() : UnaryTest{} { offsets = RandomOffsets(this->dims); std::tie(sizes, inferrable_sizes) = RandomSizes(this->dims, offsets); // Overwrite outputs since slice output size is different from input. this->operator_output = xnnpack::Buffer(this->NumElements(sizes)); this->subgraph_output = xnnpack::Buffer(this->NumElements(sizes)); } private: std::vector RandomOffsets(const std::vector& input_dims) { std::vector offsets(input_dims.size()); for (size_t i = 0; i < input_dims.size(); i++) { auto offset_dist = std::uniform_int_distribution(0, input_dims[i] - 1); offsets[i] = offset_dist(this->rng); } return offsets; } std::tuple, std::vector> RandomSizes( const std::vector& input_dims, const std::vector& offsets) { std::vector sizes(input_dims.size()); sizes[0] = std::uniform_int_distribution(1, input_dims[0] - offsets[0])(this->rng); std::vector inferrable_sizes = sizes; for (size_t i = 1; i < input_dims.size(); i++) { auto size_dist = std::uniform_int_distribution(offsets[i] == 0 ? 0 : 1, input_dims[i] - offsets[i]); inferrable_sizes[i] = size_dist(this->rng); if (inferrable_sizes[i] == 0) { sizes[i] = input_dims[i]; } else { sizes[i] = inferrable_sizes[i]; } } return {sizes, inferrable_sizes}; } protected: std::vector offsets; std::vector sizes; std::vector inferrable_sizes; }; using StaticSliceTestQS8 = StaticSliceTest; using StaticSliceTestQU8 = StaticSliceTest; using StaticSliceTestF16 = StaticSliceTest; using StaticSliceTestF32 = StaticSliceTest; TEST_F(StaticSliceTestQS8, define) { const int32_t zero_point = i8dist(rng); const float scale = scale_dist(rng); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); EXPECT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; EXPECT_EQ(node->type, xnn_node_type_static_slice); EXPECT_EQ(node->num_inputs, 1); EXPECT_EQ(node->inputs[0], input_id); EXPECT_EQ(node->num_outputs, 1); EXPECT_EQ(node->outputs[0], output_id); EXPECT_EQ(node->flags, 0); EXPECT_EQ(node->params.slice.num_dims, dims.size()); EXPECT_THAT(offsets, testing::ElementsAreArray(node->params.slice.offsets, dims.size())); EXPECT_THAT(inferrable_sizes, testing::ElementsAreArray(node->params.slice.sizes, dims.size())); } TEST_F(StaticSliceTestQU8, define) { const int32_t zero_point = u8dist(rng); const float scale = scale_dist(rng); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, zero_point, scale, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, zero_point, scale, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); EXPECT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; EXPECT_EQ(node->type, xnn_node_type_static_slice); EXPECT_EQ(node->num_inputs, 1); EXPECT_EQ(node->inputs[0], input_id); EXPECT_EQ(node->num_outputs, 1); EXPECT_EQ(node->outputs[0], output_id); EXPECT_EQ(node->flags, 0); EXPECT_EQ(node->params.slice.num_dims, dims.size()); EXPECT_THAT(offsets, testing::ElementsAreArray(node->params.slice.offsets, dims.size())); EXPECT_THAT(inferrable_sizes, testing::ElementsAreArray(node->params.slice.sizes, dims.size())); } TEST_F(StaticSliceTestF16, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), sizes.data(), input_id, output_id, /*flags=*/0)); EXPECT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; EXPECT_EQ(node->type, xnn_node_type_static_slice); EXPECT_EQ(node->num_inputs, 1); EXPECT_EQ(node->inputs[0], input_id); EXPECT_EQ(node->num_outputs, 1); EXPECT_EQ(node->outputs[0], output_id); EXPECT_EQ(node->flags, 0); EXPECT_EQ(node->params.slice.num_dims, dims.size()); EXPECT_THAT(offsets, testing::ElementsAreArray(node->params.slice.offsets, dims.size())); EXPECT_THAT(sizes, testing::ElementsAreArray(node->params.slice.sizes, dims.size())); } TEST_F(StaticSliceTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); EXPECT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; EXPECT_EQ(node->type, xnn_node_type_static_slice); EXPECT_EQ(node->num_inputs, 1); EXPECT_EQ(node->inputs[0], input_id); EXPECT_EQ(node->num_outputs, 1); EXPECT_EQ(node->outputs[0], output_id); EXPECT_EQ(node->flags, 0); EXPECT_EQ(node->params.slice.num_dims, dims.size()); EXPECT_THAT(offsets, testing::ElementsAreArray(node->params.slice.offsets, dims.size())); EXPECT_THAT(inferrable_sizes, testing::ElementsAreArray(node->params.slice.sizes, dims.size())); } TEST_F(StaticSliceTestQS8, matches_operator_api) { const int32_t zero_point = i8dist(rng); const float scale = scale_dist(rng); std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; xnn_status status = xnn_create_slice_nd_x8(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ( xnn_status_success, xnn_reshape_slice_nd_x8(op, dims.size(), dims.data(), offsets.data(), sizes.data(), /*threadpool=*/nullptr)); ASSERT_EQ( xnn_status_success, xnn_setup_slice_nd_x8(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); EXPECT_EQ(subgraph_output, operator_output); } TEST_F(StaticSliceTestQU8, matches_operator_api) { const int32_t zero_point = u8dist(rng); const float scale = scale_dist(rng); std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; xnn_status status = xnn_create_slice_nd_x8(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ( xnn_status_success, xnn_reshape_slice_nd_x8(op, dims.size(), dims.data(), offsets.data(), sizes.data(), /*threadpool=*/nullptr)); ASSERT_EQ( xnn_status_success, xnn_setup_slice_nd_x8(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, zero_point, scale, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, zero_point, scale, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); EXPECT_EQ(subgraph_output, operator_output); } TEST_F(StaticSliceTestF16, matches_operator_api) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; xnn_status status = xnn_create_slice_nd_x16(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ( xnn_status_success, xnn_reshape_slice_nd_x16(op, dims.size(), dims.data(), offsets.data(), sizes.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_slice_nd_x16(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), sizes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); EXPECT_EQ(subgraph_output, operator_output); } TEST_F(StaticSliceTestF32, matches_operator_api) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; xnn_status status = xnn_create_slice_nd_x32(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); ASSERT_EQ( xnn_status_success, xnn_reshape_slice_nd_x32(op, dims.size(), dims.data(), offsets.data(), sizes.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_slice_nd_x32(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); EXPECT_EQ(subgraph_output, operator_output); } TEST_F(StaticSliceTestF32, reshape_output) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, sizes.size(), sizes.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_static_slice(subgraph, dims.size(), offsets.data(), inferrable_sizes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); bool dynamic = false; dims[0] += 2; if (dims.size() > 1) { dims[1] += 4; } for (size_t i = 0; i < dims.size(); ++i) { dynamic |= (inferrable_sizes[i] == 0 && sizes[i] != dims[i]); } ASSERT_EQ(xnn_reshape_external_value(runtime, input_id, dims.size(), dims.data()), xnn_status_success); const struct xnn_node* node = &subgraph->nodes[0]; if (dynamic) { ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); } else { ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success); } const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; for (size_t i = 0; i < dims.size(); ++i) { if (inferrable_sizes[i] == 0) { ASSERT_EQ(dims[i], output_shape->dim[i]); } else { ASSERT_EQ(sizes[i], output_shape->dim[i]); } } dims[0] -= 1; if (dims.size() > 1) { dims[1] -= 3; } ASSERT_EQ(xnn_reshape_external_value(runtime, input_id, dims.size(), dims.data()), xnn_status_success); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success); for (size_t i = 0; i < dims.size(); ++i) { if (inferrable_sizes[i] == 0) { ASSERT_EQ(dims[i], output_shape->dim[i]); } else { ASSERT_EQ(sizes[i], output_shape->dim[i]); } } }