// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/datatype.h" #include "xnnpack/buffer.h" #include "xnnpack/log.h" #include "xnnpack/operator-utils.h" #include "xnnpack/subgraph.h" #include "replicable_random_device.h" #include "unary-ops.h" struct Param { using UnaryT = std::tuple; using ConvertT = std::tuple; explicit Param(UnaryT p) : unary_operator(std::get<0>(p)), input_datatype(std::get<1>(p)), output_datatype(std::get<1>(p)) {} explicit Param(ConvertT p) : unary_operator(std::get<0>(p)), input_datatype(std::get<1>(p)), output_datatype(std::get<2>(p)) {} std::string Name() const { std::stringstream sstr; sstr << xnn_unary_operator_to_string(unary_operator) << "_" << xnn_datatype_to_string(input_datatype); if (input_datatype != output_datatype) { sstr << "_" << xnn_datatype_to_string(output_datatype); } std::string s = sstr.str(); // Test names must be alphanumeric with no spaces std::replace(s.begin(), s.end(), ' ', '_'); std::replace(s.begin(), s.end(), '(', '_'); std::replace(s.begin(), s.end(), ')', '_'); return s; } xnn_unary_operator unary_operator; xnn_datatype input_datatype; xnn_datatype output_datatype; }; class UnaryTest : public testing::TestWithParam { public: xnnpack::ReplicableRandomDevice rng_; }; TEST_P(UnaryTest, matches_operator_api) { const xnn_unary_operator unary_operator = GetParam().unary_operator; const xnn_datatype input_datatype = GetParam().input_datatype; const xnn_datatype output_datatype = GetParam().output_datatype; const size_t sizeof_input = xnn_datatype_size_bytes(input_datatype); const size_t sizeof_output = xnn_datatype_size_bytes(output_datatype); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); std::uniform_int_distribution<> rank_dist(0, XNN_MAX_TENSOR_DIMS); std::uniform_int_distribution<> dim_dist(1, 10); std::vector dims(rank_dist(rng_)); std::generate(dims.begin(), dims.end(), [&]() { return dim_dist(rng_); }); size_t size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies()); size_t channels = dims.empty() ? 1 : dims.back(); size_t batch_size = size / channels; xnnpack::Buffer input(size * sizeof_input + XNN_EXTRA_BYTES); xnnpack::fill_uniform_random_bits(input.data(), input.size(), rng_); xnnpack::Buffer subgraph_output(size * sizeof_output); xnnpack::Buffer operator_output(size * sizeof_output); const UnaryOpInfo* op_info = GetUnaryOpInfo(unary_operator); xnn_unary_params params = op_info->DefaultParams(); const xnn_quantization_params input_quantization = op_info->InputQuantizationParams(input_datatype); const xnn_quantization_params output_quantization = op_info->OutputQuantizationParams(output_datatype); // Call operator API. const xnn_status status = xnn_run_unary_elementwise_nc( unary_operator, input_datatype, output_datatype, ¶ms, &input_quantization, &output_quantization, /*flags=*/0, batch_size, channels, channels, channels, /*thread_pool=*/nullptr, input.data(), operator_output.data()); if (status == xnn_status_unsupported_parameter) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_VALUE_ID; if (xnn_datatype_is_quantized(input_datatype)) { ASSERT_EQ(xnn_status_success, xnn_define_quantized_tensor_value( subgraph, input_datatype, input_quantization.zero_point, input_quantization.scale, dims.size(), dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); } else { ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, input_datatype, dims.size(), dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); } ASSERT_NE(input_id, XNN_INVALID_VALUE_ID); uint32_t output_id = XNN_INVALID_VALUE_ID; if (xnn_datatype_is_quantized(output_datatype)) { ASSERT_EQ(xnn_status_success, xnn_define_quantized_tensor_value( subgraph, output_datatype, output_quantization.zero_point, output_quantization.scale, dims.size(), dims.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); } else { ASSERT_EQ(xnn_status_success, xnn_define_tensor_value(subgraph, output_datatype, dims.size(), dims.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); } ASSERT_NE(output_id, XNN_INVALID_VALUE_ID); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_define_unary(subgraph, unary_operator, ¶ms, input_id, output_id, /*flags=*/0)); ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } xnn_unary_operator all_unary_ops[] = { xnn_unary_clamp, xnn_unary_abs, xnn_unary_bankers_rounding, xnn_unary_ceiling, xnn_unary_elu, xnn_unary_exp, xnn_unary_floor, xnn_unary_gelu, xnn_unary_hardswish, xnn_unary_leaky_relu, xnn_unary_log, xnn_unary_negate, xnn_unary_sigmoid, xnn_unary_square, xnn_unary_square_root, xnn_unary_reciprocal_square_root, xnn_unary_tanh, xnn_unary_cube_root, xnn_unary_cosine, xnn_unary_sine, xnn_unary_count_leading_zeros, xnn_unary_bitwise_not, xnn_unary_popcount, xnn_unary_sign, }; const xnn_datatype all_datatypes[] = { xnn_datatype_quint8, xnn_datatype_qint8, #ifndef XNN_EXCLUDE_F16_TESTS xnn_datatype_fp16, #endif xnn_datatype_bf16, xnn_datatype_fp32, xnn_datatype_int32, }; INSTANTIATE_TEST_SUITE_P( UnaryTest, UnaryTest, testing::ConvertGenerator(testing::Combine( testing::ValuesIn(all_unary_ops), testing::ValuesIn(all_datatypes))), [](const auto& info) { return info.param.Name(); }); INSTANTIATE_TEST_SUITE_P( ConvertTest, UnaryTest, testing::ConvertGenerator(testing::Combine( testing::Values(xnn_unary_convert), testing::ValuesIn(all_datatypes), testing::ValuesIn(all_datatypes))), [](const auto& info) { return info.param.Name(); }); TEST(AbsTest, reshape) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); std::vector dims{2, 3, 4}; uint32_t input_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_VALUE_ID); uint32_t output_id = XNN_INVALID_VALUE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_VALUE_ID); ASSERT_EQ(xnn_status_success, xnn_define_unary(subgraph, xnn_unary_abs, /*params=*/nullptr, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_unary_elementwise); ASSERT_EQ(node->unary_operator, xnn_unary_abs); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); ASSERT_EQ(node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); dims[0] = 7; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, 0, dims.size(), dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; const size_t num_input_elements = std::accumulate(dims.cbegin(), dims.cend(), size_t{1}, std::multiplies()); ASSERT_EQ(output_shape->dim[0], dims[0]); ASSERT_EQ(runtime->values[node->outputs[0]].size, num_input_elements * sizeof(float)); }