// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::min. #include // For std::array. #include // For size_t. #include // For uint32_t. #include // For std::unique_ptr. #include // For std::uniform_real_distribution. #include // For std::vector. #include #include "xnnpack.h" #include "xnnpack/node-type.h" #include "xnnpack/operator-utils.h" #include "xnnpack/operator.h" #include "xnnpack/subgraph.h" #include "xnnpack/buffer.h" #include "replicable_random_device.h" template class Unpooling2DTestBase : public ::testing::Test { protected: Unpooling2DTestBase() { input_size_dist = std::uniform_int_distribution(10, 15); kernel_size_dist = std::uniform_int_distribution(1, 5); stride_dist = std::uniform_int_distribution(1, 3); f32dist = std::uniform_real_distribution(0.1f, 1.0f); scale_dist = std::uniform_real_distribution(1.0f, 5.0f); i32dist = std::uniform_int_distribution(-10000, 10000); u32dist = std::uniform_int_distribution(); batch_size = input_size_dist(rng); input_height = input_size_dist(rng); input_width = input_size_dist(rng); pooling_height = 2; pooling_width = 2; channels = input_size_dist(rng); output_height = xnn_compute_unpooling_output_dimension(input_height, padding_top + padding_bottom, pooling_height); output_width = xnn_compute_unpooling_output_dimension(input_width, padding_left + padding_right, pooling_width); index_dist = std::uniform_int_distribution(0, pooling_height * pooling_width - 1); input_value_dims = {{batch_size, input_height, input_width, channels}}; input_index_dims = {{batch_size, input_height, input_width, channels}}; output_dims = {{batch_size, output_height, output_width, channels}}; input = xnnpack::Buffer(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * channels); input_index = xnnpack::Buffer(batch_size * input_height * input_width * channels); operator_output = xnnpack::Buffer(batch_size * output_height * output_width * channels); subgraph_output = xnnpack::Buffer(batch_size * output_height * output_width * channels); } xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution kernel_size_dist; std::uniform_int_distribution stride_dist; std::uniform_int_distribution i32dist; std::uniform_int_distribution u32dist; std::uniform_int_distribution index_dist; std::uniform_real_distribution f32dist; std::uniform_real_distribution scale_dist; const uint32_t padding_top = 0; const uint32_t padding_right = 0; const uint32_t padding_bottom = 0; const uint32_t padding_left = 0; uint32_t batch_size; uint32_t input_height; uint32_t input_width; uint32_t kernel_height; uint32_t kernel_width; uint32_t pooling_height; uint32_t pooling_width; uint32_t channels; uint32_t output_height; uint32_t output_width; std::array input_value_dims; std::array input_index_dims; std::array output_dims; xnnpack::Buffer input; xnnpack::Buffer input_index; xnnpack::Buffer operator_output; xnnpack::Buffer subgraph_output; }; using Unpooling2DTestX32 = Unpooling2DTestBase; TEST_F(Unpooling2DTestX32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_value_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id)); ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID); uint32_t input_index_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(), input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_unpooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, input_value_id, input_index_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_unpooling_2d); ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); ASSERT_EQ(node->num_inputs, 2); ASSERT_EQ(node->inputs[0], input_value_id); ASSERT_EQ(node->inputs[1], input_index_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(Unpooling2DTestX32, matches_operator_api) { xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return u32dist(rng); }); std::generate(input_index.begin(), input_index.end(), [&]() { return index_dist(rng); }); std::generate(operator_output.begin(), operator_output.end(), [&]() { return u32dist(rng); }); std::generate(subgraph_output.begin(), subgraph_output.end(), [&]() { return u32dist(rng); }); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. const xnn_status status = xnn_create_unpooling2d_nhwc_x32( padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, channels, channels, channels, /*flags=*/0, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_reshape_unpooling2d_nhwc_x32( op, batch_size, input_height, input_width, /*output_height_out=*/nullptr, /*output_width_out=*/nullptr, /*threadpool=*/nullptr)); ASSERT_EQ( xnn_status_success, xnn_setup_unpooling2d_nhwc_x32( op, input.data(), input_index.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_value_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id)); ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID); uint32_t input_index_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(), input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_unpooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, input_value_id, input_index_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_value_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(Unpooling2DTestX32, reshape_output) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_value_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id)); ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID); uint32_t input_index_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(), input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_unpooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, input_value_id, input_index_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_unpooling_2d); ASSERT_EQ(node->num_inputs, 2); ASSERT_EQ(node->inputs[0], input_value_id); ASSERT_EQ(node->inputs[1], input_index_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); ASSERT_EQ( node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); input_value_dims[0] += 1; input_value_dims[1] += 1; input_value_dims[2] += 1; input_value_dims[3] += 1; input_index_dims[0] += 1; input_index_dims[1] += 1; input_index_dims[2] += 1; input_index_dims[3] += 1; ASSERT_EQ( xnn_status_success, xnn_reshape_external_value(runtime, 0, input_value_dims.size(), input_value_dims.data())); ASSERT_EQ( xnn_status_success, xnn_reshape_external_value(runtime, 1, input_index_dims.size(), input_index_dims.data())); ASSERT_EQ( node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; const size_t expected_height = xnn_compute_unpooling_output_dimension(input_value_dims[1], padding_top + padding_bottom, pooling_height); const size_t expected_width = xnn_compute_unpooling_output_dimension(input_value_dims[2], padding_left + padding_right, pooling_width); ASSERT_EQ(output_shape->dim[0], input_value_dims[0]); ASSERT_EQ(output_shape->dim[1], expected_height); ASSERT_EQ(output_shape->dim[2], expected_width); ASSERT_EQ(output_shape->dim[3], input_value_dims[3]); }