// Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/common.h" #include "xnnpack/isa-checks.h" #include "xnnpack/microfnptr.h" #include "xnnpack/pad.h" #include "xnnpack/buffer.h" #include "replicable_random_device.h" class PadMicrokernelTester { public: PadMicrokernelTester& rows(size_t rows) { assert(rows != 0); this->rows_ = rows; return *this; } size_t rows() const { return this->rows_; } PadMicrokernelTester& input_channels(size_t input_channels) { assert(input_channels != 0); this->input_channels_ = input_channels; return *this; } size_t input_channels() const { return this->input_channels_; } PadMicrokernelTester& pre_padding(size_t pre_padding) { this->pre_padding_ = pre_padding; return *this; } size_t pre_padding() const { return this->pre_padding_; } PadMicrokernelTester& post_padding(size_t post_padding) { this->post_padding_ = post_padding; return *this; } size_t post_padding() const { return this->post_padding_; } size_t output_channels() const { return pre_padding() + input_channels() + post_padding(); } PadMicrokernelTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } size_t input_stride() const { if (this->input_stride_ == 0) { return input_channels(); } else { assert(this->input_stride_ >= input_channels()); return this->input_stride_; } } PadMicrokernelTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } size_t output_stride() const { if (this->output_stride_ == 0) { return pre_padding() + input_channels() + post_padding(); } else { assert(this->output_stride_ >= pre_padding() + input_channels() + post_padding()); return this->output_stride_; } } PadMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } size_t iterations() const { return this->iterations_; } void Test(xnn_pad_ukernel_fn pad) const { xnnpack::ReplicableRandomDevice rng; auto u8rng = [&rng]() { return std::uniform_int_distribution( 0, std::numeric_limits::max())(rng); }; xnnpack::Buffer input(input_channels() + (rows() - 1) * input_stride() + XNN_EXTRA_BYTES / sizeof(uint8_t)); xnnpack::Buffer output( (pre_padding() + input_channels() + post_padding()) + (rows() - 1) * output_stride()); for (size_t iteration = 0; iteration < iterations(); iteration++) { xnnpack::fill_uniform_random_bits(input.data(), input.size(), rng); xnnpack::fill_uniform_random_bits(output.data(), output.size(), rng); std::array fill_pattern; std::generate(fill_pattern.begin(), fill_pattern.end(), std::ref(u8rng)); uint32_t fill_value = 0; memcpy(&fill_value, fill_pattern.data(), sizeof(fill_value)); // Call optimized micro-kernel. pad(rows(), input_channels() * sizeof(uint8_t), pre_padding() * sizeof(uint8_t), post_padding() * sizeof(uint8_t), input.data(), input_stride() * sizeof(uint8_t), output.data(), output_stride() * sizeof(uint8_t), fill_value); // Verify results. for (size_t i = 0; i < rows(); i++) { for (size_t l = 0; l < pre_padding(); l++) { ASSERT_EQ(uint32_t(output[i * output_stride() + l]), uint32_t(fill_pattern[l % fill_pattern.size()])) << "at row " << i << " / " << rows() << ", channel " << i << " / " << output_channels() << " (" << pre_padding() << " + " << input_channels() << " + " << post_padding() << ")" << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value << ", output value 0x" << std::hex << std::setw(2) << std::setfill('0') << uint32_t(output[i * output_stride() + l]); } for (size_t c = 0; c < input_channels(); c++) { ASSERT_EQ(uint32_t(output[i * output_stride() + pre_padding() + c]), uint32_t(input[i * input_stride() + c])) << "at row " << i << " / " << rows() << ", channel " << i << " / " << output_channels() << " (" << pre_padding() << " + " << input_channels() << " + " << post_padding() << ")" << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value << ", output value 0x" << std::hex << std::setw(2) << std::setfill('0') << uint32_t(output[i * output_stride() + pre_padding() + c]); } for (size_t r = 0; r < post_padding(); r++) { ASSERT_EQ(uint32_t(output[i * output_stride() + pre_padding() + input_channels() + r]), uint32_t(fill_pattern[r % fill_pattern.size()])) << "at row " << i << " / " << rows() << ", channel " << i << " / " << output_channels() << " (" << pre_padding() << " + " << input_channels() << " + " << post_padding() << ")" << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value << ", output value 0x" << std::hex << std::setw(2) << std::setfill('0') << uint32_t(output[i * output_stride() + pre_padding() + input_channels() + r]); } } } } private: size_t rows_{1}; size_t input_channels_{1}; size_t pre_padding_{0}; size_t post_padding_{0}; size_t input_stride_{0}; size_t output_stride_{0}; size_t iterations_{15}; }; struct TestParams { const char* name; uint64_t arch_flags; xnn_pad_ukernel_fn ukernel; size_t tile_size; }; #define XNN_PAD_UKERNEL(arch_flags, ukernel, tile_size) \ {#ukernel, arch_flags, ukernel, tile_size}, TestParams test_params[] = { #include "xx-pad/xx-pad.h" }; #undef XNN_PAD_UKERNEL class PadTest : public testing::TestWithParam {}; TEST_P(PadTest, fulltile_copy_channels_eq_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; PadMicrokernelTester().rows(1).input_channels(tile_size).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_copy_channels_div_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t channels = tile_size * 2; channels <= tile_size * 3; channels += tile_size) { PadMicrokernelTester().rows(1).input_channels(channels).Test( GetParam().ukernel); } } TEST_P(PadTest, fulltile_copy_channels_lt_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t channels = 1; channels < tile_size; channels++) { PadMicrokernelTester().rows(1).input_channels(channels).Test( GetParam().ukernel); } } TEST_P(PadTest, fulltile_copy_channels_gt_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t channels = 17; channels < tile_size * 2; channels++) { PadMicrokernelTester().rows(1).input_channels(channels).Test( GetParam().ukernel); } } TEST_P(PadTest, fulltile_pre_padding_eq_1) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); PadMicrokernelTester().rows(1).input_channels(1).pre_padding(1).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_pre_padding_eq_2) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); PadMicrokernelTester().rows(1).input_channels(1).pre_padding(2).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_pre_padding_eq_4) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); PadMicrokernelTester().rows(1).input_channels(1).pre_padding(4).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_pre_padding_eq_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; PadMicrokernelTester().rows(1).input_channels(1).pre_padding(tile_size).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_pre_padding_div_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t pre_padding = tile_size * 2; pre_padding <= tile_size * 3; pre_padding += tile_size) { PadMicrokernelTester() .rows(1) .input_channels(1) .pre_padding(pre_padding) .Test(GetParam().ukernel); } } TEST_P(PadTest, fulltile_pre_padding_lt_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t pre_padding = 1; pre_padding < tile_size; pre_padding++) { PadMicrokernelTester() .rows(1) .input_channels(1) .pre_padding(pre_padding) .Test(GetParam().ukernel); } } TEST_P(PadTest, fulltile_pre_padding_gt_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t pre_padding = 17; pre_padding < tile_size * 2; pre_padding++) { PadMicrokernelTester() .rows(1) .input_channels(1) .pre_padding(pre_padding) .Test(GetParam().ukernel); } } TEST_P(PadTest, fulltile_post_padding_eq_1) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); PadMicrokernelTester().rows(1).input_channels(1).post_padding(1).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_post_padding_eq_2) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); PadMicrokernelTester().rows(1).input_channels(1).post_padding(2).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_post_padding_eq_4) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); PadMicrokernelTester().rows(1).input_channels(1).post_padding(4).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_post_padding_eq_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; PadMicrokernelTester().rows(1).input_channels(1).post_padding(tile_size).Test( GetParam().ukernel); } TEST_P(PadTest, fulltile_post_padding_div_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t post_padding = tile_size * 2; post_padding <= tile_size * 3; post_padding += tile_size) { PadMicrokernelTester() .rows(1) .input_channels(1) .post_padding(post_padding) .Test(GetParam().ukernel); } } TEST_P(PadTest, fulltile_post_padding_lt_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t post_padding = 1; post_padding < tile_size; post_padding++) { PadMicrokernelTester() .rows(1) .input_channels(1) .post_padding(post_padding) .Test(GetParam().ukernel); } } TEST_P(PadTest, fulltile_post_padding_gt_tile_size) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t post_padding = 17; post_padding < tile_size * 2; post_padding++) { PadMicrokernelTester() .rows(1) .input_channels(1) .post_padding(post_padding) .Test(GetParam().ukernel); } } TEST_P(PadTest, multitile) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t rows = 2; rows <= 5; rows++) { for (size_t channels = 1; channels < tile_size * 3; channels += 3) { PadMicrokernelTester() .rows(rows) .input_channels(channels) .pre_padding(channels) .post_padding(channels) .Test(GetParam().ukernel); } } } TEST_P(PadTest, multitile_with_input_stride) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t rows = 2; rows <= 5; rows++) { for (size_t channels = 1; channels < tile_size * 3; channels += 3) { PadMicrokernelTester() .rows(rows) .input_channels(channels) .pre_padding(channels) .post_padding(channels) .input_stride(51) .Test(GetParam().ukernel); } } } TEST_P(PadTest, multitile_with_output_stride) { TEST_REQUIRES_ARCH_FLAGS(GetParam().arch_flags); const size_t tile_size = GetParam().tile_size; for (size_t rows = 2; rows <= 5; rows++) { for (size_t channels = 1; channels < tile_size * 3; channels += 3) { PadMicrokernelTester() .rows(rows) .input_channels(2 * channels) .pre_padding(channels) .post_padding(channels) .output_stride(193) .Test(GetParam().ukernel); } } } INSTANTIATE_TEST_SUITE_P(pad, PadTest, ::testing::ValuesIn(test_params), [](const auto& info) { return info.param.name; });