/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include #include #include #include #include #include #include "./EmbeddingSpMDMTestUtils.h" #include "fbgemm/Fbgemm.h" #include "src/RefImplementations.h" using namespace std; using namespace fbgemm; static vector> GetInputs_() { vector> input_dims = { // batch size, number of rows of table, emb dim , avg lengthl {1, 8, 8, 4}, {2, 8, 16, 4}, {10, 4000, 32, 100}, {100, 4000, 32, 100}, {10, 4000, 64, 100}, {10, 4000, 128, 100}, {4, 400, 256, 10}, {10, 4000, 48, 100}, {10, 4000, 40, 100}, {10, 4000, 56, 100}, {10, 4000, 1, 100}, {10, 4000, 4, 100}, // These were from C2 tests {10, 40, 16, 10}, {10, 40, 85, 10}, {10, 40, 8, 10}, {10, 40, 96, 10}, {10, 40, 163, 10}, }; return input_dims; } vector prefetch_distances{0, 16, 1000000}; namespace { class Fused8BitRowwiseEmbeddingLookupTest : public testing::TestWithParam> {}; }; // namespace INSTANTIATE_TEST_CASE_P( InstantiationName, Fused8BitRowwiseEmbeddingLookupTest, ::testing::Combine( ::testing::ValuesIn(prefetch_distances), ::testing::Values( UNWEIGHTED, WEIGHTED, POSITIONAL_WEIGHTED), // use_weight ::testing::Values( NONE, EMPTY_INDICES, OUT_OF_BOUND_INDICES, UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM), ::testing::Values(FLOAT, FLOAT16, BFLOAT16))); TEST_P(Fused8BitRowwiseEmbeddingLookupTest, basicTest) { vector> inputs(GetInputs_()); random_device r; default_random_engine generator(r()); uniform_int_distribution<> bool_dist(0, 1); bool isIndex64b = bool_dist(generator); bool isOffset64b = bool_dist(generator); bool normalize_by_lengths = bool_dist(generator); bool use_offsets = bool_dist(generator); bool scale_bias_last = bool_dist(generator); int prefetch; EmbeddingSpMDMWeightChoice weight_choice; EmbeddingSpMDMCornerCase corner_case; EmbeddingSpMDMOutputDtypeChoice out_type; tie(prefetch, weight_choice, corner_case, out_type) = GetParam(); bool is_wt_positional = weight_choice == POSITIONAL_WEIGHTED; bool use_weight = weight_choice != UNWEIGHTED; if (corner_case != NONE || weight_choice == POSITIONAL_WEIGHTED) { // Check corner case only for subset of tests. if (normalize_by_lengths || out_type != FLOAT || !scale_bias_last) { return; } } if (is_wt_positional && !use_weight) { // weight positional only makes sense when use_weight is true return; } for (auto input : inputs) { int batch_size = input[0]; int num_rows = input[1]; int embedding_dim = input[2]; int average_len = input[3]; // Create embedding table normal_distribution embedding_distribution; uniform_int_distribution entries(0, 16); int fused_embedding_dim = embedding_dim + 2 * (scale_bias_last ? sizeof(float) : sizeof(float16)); vector fused_embedding_table(num_rows * fused_embedding_dim); for (int i = 0; i < num_rows; i++) { for (int ii = 0; ii < embedding_dim; ii++) { fused_embedding_table [i * fused_embedding_dim + ii + (scale_bias_last ? 0 : 2 * sizeof(float16))] = entries(generator); } float* scale_bias = reinterpret_cast( fused_embedding_table.data() + i * fused_embedding_dim + (scale_bias_last ? embedding_dim : 0)); if (scale_bias_last) { scale_bias[0] = embedding_distribution(generator); scale_bias[1] = embedding_distribution(generator); } else { reinterpret_cast(scale_bias)[0] = cpu_float2half_rn(embedding_distribution(generator)); reinterpret_cast(scale_bias)[1] = cpu_float2half_rn(embedding_distribution(generator)); } } vector lengths, offsets, indices; vector lengths_32, offsets_32, indices_32; vector weights; int lengths_sum = GenerateLengthsIndicesWeights( lengths, lengths_32, offsets, offsets_32, indices, indices_32, weights, batch_size, num_rows, average_len, corner_case); const int64_t* offsets_or_lengths = (use_offsets ? offsets : lengths).data(); const int32_t* offsets_or_lengths_32 = (use_offsets ? offsets_32 : lengths_32).data(); if (!scale_bias_last && use_weight) { // When scale_bias_last == false, assume this is for table batched // embedding (TBE) that can get -1 for pruned rows. uniform_int_distribution pruned_indices_distribution( 0, indices.size() - 1); constexpr float PRUNED_INDICES_PROPORTION = 0.1; for (int i = 0; i < indices.size() * PRUNED_INDICES_PROPORTION; ++i) { auto idx = pruned_indices_distribution(generator); indices[idx] = -1; indices_32[idx] = -1; } } // Sentries at the end to make sure masking is done correctly not to write // out of bounds. constexpr int num_sentries = 10; const float sentry_value = 1.0f; int output_size_wo_sentries = batch_size * embedding_dim; vector output_ref(output_size_wo_sentries + num_sentries); vector output(output_ref.size()); vector output_ref_16b(output.size()), output_16b(output.size()); for (size_t i = output_size_wo_sentries; i < output.size(); ++i) { output_ref[i] = sentry_value; output[i] = sentry_value; output_ref_16b[i] = convert_from_float_ref(sentry_value, out_type == BFLOAT16); output_16b[i] = convert_from_float_ref(sentry_value, out_type == BFLOAT16); } bool success, success_ref; #define TEST_BASE( \ indices, \ offsets_or_lengths, \ output_ref, \ output, \ IndexType, \ OffsetType, \ OutType) \ success_ref = EmbeddingSpMDM_ref( \ embedding_dim, \ batch_size, \ lengths_sum, \ num_rows, \ fused_embedding_table.data(), \ corner_case == EMPTY_INDICES ? nullptr : indices.data(), \ offsets_or_lengths, \ use_weight ? weights.data() : nullptr, \ normalize_by_lengths, \ output_ref.data(), \ is_wt_positional, \ use_offsets, \ /*output_stride=*/-1, \ /*input_stride=*/-1, \ scale_bias_last, \ /*is_bf16_out=*/out_type == BFLOAT16, \ /*is_bf16_in=*/false); \ \ auto kernel = GenerateEmbeddingSpMDMWithStrides< \ uint8_t, \ IndexType, \ OffsetType, \ OutType>( \ embedding_dim, \ use_weight, \ normalize_by_lengths, \ prefetch, \ is_wt_positional, \ use_offsets, \ /*output_stride=*/-1, \ /*input_stride=*/-1, \ scale_bias_last, \ /*is_bf16_out=*/out_type == BFLOAT16, \ /*is_bf16_in=*/false); \ success = kernel( \ batch_size, \ lengths_sum, \ num_rows, \ fused_embedding_table.data(), \ corner_case == EMPTY_INDICES ? nullptr : indices.data(), \ offsets_or_lengths, \ use_weight ? weights.data() : nullptr, \ output.data()); #define TEST_OUT_TYPE(indices, offsets_or_lengths, IndexType, OffsetType) \ if (out_type == FLOAT) { \ TEST_BASE( \ indices, \ offsets_or_lengths, \ output_ref, \ output, \ IndexType, \ OffsetType, \ float); \ } else { \ TEST_BASE( \ indices, \ offsets_or_lengths, \ output_ref_16b, \ output_16b, \ IndexType, \ OffsetType, \ float16); \ } #define TEST_OFFSET_TYPE(indices, IndexType) \ if (isOffset64b) { \ TEST_OUT_TYPE(indices, offsets_or_lengths, IndexType, int64_t); \ } else { \ TEST_OUT_TYPE(indices, offsets_or_lengths_32, IndexType, int32_t); \ } if (isIndex64b) { TEST_OFFSET_TYPE(indices, int64_t); } else { TEST_OFFSET_TYPE(indices_32, int32_t); } #undef TEST_OFFSET_TYPE #undef TEST_OUT_TYPE #undef TEST_BASE // Check correctness EXPECT_EQ(success, success_ref) << "Reference and JIT impl did not both succeed"; if (corner_case == OUT_OF_BOUND_INDICES || corner_case == UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM) { EXPECT_EQ(success, false); } if (success) { for (size_t i = 0; i < output.size(); ++i) { float actual = (out_type == FLOAT) ? output[i] : convert_to_float_ref(output_16b[i], out_type == BFLOAT16); float expected = (out_type == FLOAT) ? output_ref[i] : convert_to_float_ref(output_ref_16b[i], out_type == BFLOAT16); EXPECT_EQ(actual, expected) << "results differ at (" << i << ") reference: " << expected << ", FBGEMM: " << actual << " emb dim :" << embedding_dim; } for (int offset = output_size_wo_sentries; offset < output_size_wo_sentries + num_sentries; ++offset) { float actual = (out_type == FLOAT) ? output[offset] : convert_to_float_ref(output_16b[offset], out_type == BFLOAT16); float expected = (out_type == FLOAT) ? output_ref[offset] : convert_to_float_ref( output_ref_16b[offset], out_type == BFLOAT16); EXPECT_EQ(actual, expected) << "results differ at (" << offset << ") reference: " << expected << ", FBGEMM: " << actual << " emb dim :" << embedding_dim; } } } // end for input } TEST_P(Fused8BitRowwiseEmbeddingLookupTest, rowwiseSparseTest) { vector> inputs(GetInputs_()); random_device r; default_random_engine generator(r()); uniform_int_distribution<> bool_dist(0, 1); bool isIndex64b = bool_dist(generator); bool isOffset64b = bool_dist(generator); bool normalize_by_lengths = bool_dist(generator); bool use_offsets = bool_dist(generator); bool scale_bias_last = bool_dist(generator); int prefetch; EmbeddingSpMDMWeightChoice weight_choice; EmbeddingSpMDMCornerCase corner_case; EmbeddingSpMDMDtypeChoice out_type; tie(prefetch, weight_choice, corner_case, out_type) = GetParam(); bool is_wt_positional = weight_choice == POSITIONAL_WEIGHTED; bool use_weight = weight_choice != UNWEIGHTED; if (out_type != FLOAT || !scale_bias_last) { return; } constexpr float sparsity = 0.7; for (auto input : inputs) { int batch_size = input[0]; int num_rows = input[1]; int embedding_dim = input[2]; int average_len = input[3]; // Create mapping table for rowwise sparsity vector mapping_table; int num_compressed_rows = CreateMappingTableForRowWiseSparsity(mapping_table, num_rows, sparsity); // Create embedding table normal_distribution embedding_distribution; uniform_int_distribution entries(0, 16); int fused_embedding_dim = embedding_dim + 2 * sizeof(float); vector fused_embedding_table( num_compressed_rows * fused_embedding_dim); for (int i = 0; i < num_compressed_rows; i++) { for (int ii = 0; ii < embedding_dim; ii++) { fused_embedding_table[i * fused_embedding_dim + ii] = entries(generator); } float* scale_bias = reinterpret_cast( fused_embedding_table.data() + i * fused_embedding_dim + embedding_dim); scale_bias[0] = embedding_distribution(generator); scale_bias[1] = embedding_distribution(generator); } vector lengths, offsets, indices; vector lengths_32, offsets_32, indices_32; vector weights; int lengths_sum = GenerateLengthsIndicesWeights( lengths, lengths_32, offsets, offsets_32, indices, indices_32, weights, batch_size, num_rows, average_len, corner_case); const int64_t* offsets_or_lengths = (use_offsets ? offsets : lengths).data(); const int32_t* offsets_or_lengths_32 = (use_offsets ? offsets_32 : lengths_32).data(); vector output_sls_ref(batch_size * embedding_dim); vector output_slws_ref(output_sls_ref.size()), output_sls(output_sls_ref.size()), output_slws(output_sls_ref.size()); vector& output_ref = use_weight ? output_slws_ref : output_sls_ref; vector& output = use_weight ? output_slws : output_sls; bool success, success_ref; if (isOffset64b) { if (isIndex64b) { success_ref = EmbeddingSpMDMRowWiseSparse_ref( embedding_dim, batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices.data(), mapping_table.data(), offsets_or_lengths, use_weight ? weights.data() : nullptr, normalize_by_lengths, output_ref.data(), is_wt_positional, use_offsets); auto kernel = GenerateEmbeddingSpMDMRowWiseSparse( embedding_dim, use_weight, normalize_by_lengths, prefetch, is_wt_positional, use_offsets); success = kernel( batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices.data(), offsets_or_lengths, use_weight ? weights.data() : nullptr, output.data(), mapping_table.data()); } else { success_ref = EmbeddingSpMDMRowWiseSparse_ref( embedding_dim, batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices_32.data(), mapping_table.data(), offsets_or_lengths, use_weight ? weights.data() : nullptr, normalize_by_lengths, output_ref.data(), is_wt_positional, use_offsets); auto kernel = GenerateEmbeddingSpMDMRowWiseSparse( embedding_dim, use_weight, normalize_by_lengths, prefetch, is_wt_positional, use_offsets); success = kernel( batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices_32.data(), offsets_or_lengths, use_weight ? weights.data() : nullptr, output.data(), mapping_table.data()); } } else { if (isIndex64b) { success_ref = EmbeddingSpMDMRowWiseSparse_ref( embedding_dim, batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices.data(), mapping_table.data(), offsets_or_lengths, use_weight ? weights.data() : nullptr, normalize_by_lengths, output_ref.data(), is_wt_positional, use_offsets); auto kernel = GenerateEmbeddingSpMDMRowWiseSparse( embedding_dim, use_weight, normalize_by_lengths, prefetch, is_wt_positional, use_offsets); success = kernel( batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices.data(), offsets_or_lengths_32, use_weight ? weights.data() : nullptr, output.data(), mapping_table.data()); } else { success_ref = EmbeddingSpMDMRowWiseSparse_ref( embedding_dim, batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices_32.data(), mapping_table.data(), offsets_or_lengths, use_weight ? weights.data() : nullptr, normalize_by_lengths, output_ref.data(), is_wt_positional, use_offsets); auto kernel = GenerateEmbeddingSpMDMRowWiseSparse( embedding_dim, use_weight, normalize_by_lengths, prefetch, is_wt_positional, use_offsets); success = kernel( batch_size, lengths_sum, num_rows, fused_embedding_table.data(), corner_case == EMPTY_INDICES ? nullptr : indices_32.data(), offsets_or_lengths_32, use_weight ? weights.data() : nullptr, output.data(), mapping_table.data()); } } // Check correctness EXPECT_EQ(success, success_ref) << "Reference and JIT impl did not both succeed"; if (corner_case == OUT_OF_BOUND_INDICES || corner_case == UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM) { EXPECT_EQ(success, false); } if (success) { for (size_t i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], output_ref[i]) << "results differ at (" << i << ") reference: " << output_ref[i] << ", FBGEMM: " << output[i] << " emb dim :" << embedding_dim; } } } // end for input }