import torch from torch import Tensor def _box_cxcywh_to_xyxy(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (cx, cy, w, h) format to (x1, y1, x2, y2) format. (cx, cy) refers to center of bounding box (w, h) are width and height of bounding box Args: boxes (Tensor[N, 4]): boxes in (cx, cy, w, h) format which will be converted. Returns: boxes (Tensor(N, 4)): boxes in (x1, y1, x2, y2) format. """ # We need to change all 4 of them so some temporary variable is needed. cx, cy, w, h = boxes.unbind(-1) x1 = cx - 0.5 * w y1 = cy - 0.5 * h x2 = cx + 0.5 * w y2 = cy + 0.5 * h boxes = torch.stack((x1, y1, x2, y2), dim=-1) return boxes def _box_xyxy_to_cxcywh(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (x1, y1, x2, y2) format to (cx, cy, w, h) format. (x1, y1) refer to top left of bounding box (x2, y2) refer to bottom right of bounding box Args: boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format which will be converted. Returns: boxes (Tensor(N, 4)): boxes in (cx, cy, w, h) format. """ x1, y1, x2, y2 = boxes.unbind(-1) cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 boxes = torch.stack((cx, cy, w, h), dim=-1) return boxes def _box_xywh_to_xyxy(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (x, y, w, h) format to (x1, y1, x2, y2) format. (x, y) refers to top left of bounding box. (w, h) refers to width and height of box. Args: boxes (Tensor[N, 4]): boxes in (x, y, w, h) which will be converted. Returns: boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format. """ x, y, w, h = boxes.unbind(-1) boxes = torch.stack([x, y, x + w, y + h], dim=-1) return boxes def _box_xyxy_to_xywh(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (x1, y1, x2, y2) format to (x, y, w, h) format. (x1, y1) refer to top left of bounding box (x2, y2) refer to bottom right of bounding box Args: boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) which will be converted. Returns: boxes (Tensor[N, 4]): boxes in (x, y, w, h) format. """ x1, y1, x2, y2 = boxes.unbind(-1) w = x2 - x1 # x2 - x1 h = y2 - y1 # y2 - y1 boxes = torch.stack((x1, y1, w, h), dim=-1) return boxes def _box_cxcywhr_to_xywhr(boxes: Tensor) -> Tensor: """ Converts rotated bounding boxes from (cx, cy, w, h, r) format to (x1, y1, w, h, r) format. (cx, cy) refers to center of bounding box (w, h) refers to width and height of rotated bounding box (x1, y1) refers to top left of rotated bounding box r is rotation angle w.r.t to the box center by :math:`|r|` degrees counter clock wise in the image plan Args: boxes (Tensor[N, 5]): boxes in (cx, cy, w, h, r) format which will be converted. Returns: boxes (Tensor(N, 5)): rotated boxes in (x1, y1, w, h, r) format. """ dtype = boxes.dtype need_cast = not boxes.is_floating_point() cx, cy, w, h, r = boxes.unbind(-1) r_rad = r * torch.pi / 180.0 cos, sin = torch.cos(r_rad), torch.sin(r_rad) x1 = cx - w / 2 * cos - h / 2 * sin y1 = cy - h / 2 * cos + w / 2 * sin boxes = torch.stack((x1, y1, w, h, r), dim=-1) if need_cast: boxes.round_() boxes = boxes.to(dtype) return boxes def _box_xywhr_to_cxcywhr(boxes: Tensor) -> Tensor: """ Converts rotated bounding boxes from (x1, y1, w, h, r) format to (cx, cy, w, h, r) format. (x1, y1) refers to top left of rotated bounding box (w, h) refers to width and height of rotated bounding box r is rotation angle w.r.t to the box center by :math:`|r|` degrees counter clock wise in the image plan Args: boxes (Tensor[N, 5]): rotated boxes in (x1, y1, w, h, r) format which will be converted. Returns: boxes (Tensor[N, 5]): rotated boxes in (cx, cy, w, h, r) format. """ dtype = boxes.dtype need_cast = not boxes.is_floating_point() x1, y1, w, h, r = boxes.unbind(-1) r_rad = r * torch.pi / 180.0 cos, sin = torch.cos(r_rad), torch.sin(r_rad) cx = x1 + w / 2 * cos + h / 2 * sin cy = y1 - w / 2 * sin + h / 2 * cos boxes = torch.stack([cx, cy, w, h, r], dim=-1) if need_cast: boxes.round_() boxes = boxes.to(dtype) return boxes def _box_xywhr_to_xyxyxyxy(boxes: Tensor) -> Tensor: """ Converts rotated bounding boxes from (x1, y1, w, h, r) format to (x1, y1, x2, y2, x3, y3, x4, y4) format. (x1, y1) refer to top left of bounding box (w, h) are width and height of the rotated bounding box r is rotation angle w.r.t to the box center by :math:`|r|` degrees counter clock wise in the image plan (x1, y1) refer to top left of rotated bounding box (x2, y2) refer to top right of rotated bounding box (x3, y3) refer to bottom right of rotated bounding box (x4, y4) refer to bottom left ofrotated bounding box Args: boxes (Tensor[N, 5]): rotated boxes in (cx, cy, w, h, r) format which will be converted. Returns: boxes (Tensor(N, 8)): rotated boxes in (x1, y1, x2, y2, x3, y3, x4, y4) format. """ dtype = boxes.dtype need_cast = not boxes.is_floating_point() x1, y1, w, h, r = boxes.unbind(-1) r_rad = r * torch.pi / 180.0 cos, sin = torch.cos(r_rad), torch.sin(r_rad) x2 = x1 + w * cos y2 = y1 - w * sin x3 = x2 + h * sin y3 = y2 + h * cos x4 = x1 + h * sin y4 = y1 + h * cos boxes = torch.stack((x1, y1, x2, y2, x3, y3, x4, y4), dim=-1) if need_cast: boxes.round_() boxes = boxes.to(dtype) return boxes def _box_xyxyxyxy_to_xywhr(boxes: Tensor) -> Tensor: """ Converts rotated bounding boxes from (x1, y1, x2, y2, x3, y3, x4, y4) format to (x1, y1, w, h, r) format. (x1, y1) refer to top left of the rotated bounding box (x2, y2) refer to bottom left of the rotated bounding box (x3, y3) refer to bottom right of the rotated bounding box (x4, y4) refer to top right of the rotated bounding box (w, h) refers to width and height of rotated bounding box r is rotation angle w.r.t to the box center by :math:`|r|` degrees counter clock wise in the image plan Args: boxes (Tensor(N, 8)): rotated boxes in (x1, y1, x2, y2, x3, y3, x4, y4) format. Returns: boxes (Tensor[N, 5]): rotated boxes in (x1, y1, w, h, r) format. """ dtype = boxes.dtype need_cast = not boxes.is_floating_point() x1, y1, x2, y2, x3, y3, x4, y4 = boxes.unbind(-1) r_rad = torch.atan2(y1 - y2, x2 - x1) r = r_rad * 180 / torch.pi w = ((x2 - x1) ** 2 + (y1 - y2) ** 2).sqrt() h = ((x3 - x2) ** 2 + (y3 - y2) ** 2).sqrt() boxes = torch.stack((x1, y1, w, h, r), dim=-1) if need_cast: boxes.round_() boxes = boxes.to(dtype) return boxes