/* * Copyright (c) 2024 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "pytorch_extension_utils.h" using namespace flashinfer; using namespace flashinfer::group_gemm; void CutlassSegmentGEMM(at::Tensor workspace_buffer, at::Tensor all_problems, at::Tensor x_ptr, at::Tensor w_ptr, at::Tensor y_ptr, at::Tensor x_ld, at::Tensor w_ld, at::Tensor y_ld, at::Tensor empty_x_data, bool weight_column_major) { unsigned int batch_size = x_ptr.size(0); const c10::cuda::OptionalCUDAGuard device_guard(workspace_buffer.device()); auto stream = at::cuda::getCurrentCUDAStream(); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(empty_x_data.scalar_type(), c_type, [&] { using cutlass_t = cutlass_dtype_t; auto status = CutlassSegmentGEMMRun( workspace_buffer.data_ptr(), workspace_buffer.element_size() * workspace_buffer.size(0), all_problems.data_ptr(), batch_size, x_ptr.data_ptr(), w_ptr.data_ptr(), y_ptr.data_ptr(), x_ld.data_ptr(), w_ld.data_ptr(), y_ld.data_ptr(), weight_column_major, stream); TORCH_CHECK(status == cudaSuccess, "Failed to run CutlassSegmentGEMM: ", cudaGetErrorString(status)); return true; }); }