""" Copyright (c) 2025 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import functools from dataclasses import dataclass from types import SimpleNamespace from typing import Optional, Tuple import torch from ..jit import JitSpec from ..jit import env as jit_env from ..jit import gen_jit_spec from ..utils import register_custom_op from .mapping import Mapping from .mnnvl import MnnvlMemory, MnnvlConfig def gen_comm_alltoall_module() -> JitSpec: return gen_jit_spec( "comm", [ jit_env.FLASHINFER_CSRC_DIR / "trtllm_alltoall.cu", jit_env.FLASHINFER_CSRC_DIR / "trtllm_alltoall_prepare.cu", ], ) @functools.cache def get_comm_alltoall_module(): module = gen_comm_alltoall_module().build_and_load() @register_custom_op( "flashinfer::moe_comm_prepare_indices", mutates_args=[], ) def moe_comm_prepare_indices( gathered_target_rank_ids: torch.Tensor, real_rank_token_count_cum_sum: Optional[torch.Tensor], max_token_count_per_rank: int, expert_count: int, top_k: int, ep_rank: int, ep_size: int, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: device = gathered_target_rank_ids.device max_send_ranks_per_token = max(top_k, ep_size) local_gather_indices = torch.empty( (max_token_count_per_rank * ep_size), device=device, dtype=torch.int ) send_rank_count_cum_sum = torch.empty( (ep_size,), device=device, dtype=torch.int ) send_rank_local_indices = torch.empty( (max_token_count_per_rank * max_send_ranks_per_token), device=device, dtype=torch.int, ) recv_rank_count_cum_sum = torch.empty((ep_size), device=device, dtype=torch.int) recv_rank_local_indices = torch.empty( (max_token_count_per_rank * ep_size), device=device, dtype=torch.int ) backward_recv_rank_local_indice = torch.empty( (max_token_count_per_rank * max_send_ranks_per_token), device=device, dtype=torch.int, ) module.moe_comm_prepare_indices( gathered_target_rank_ids, real_rank_token_count_cum_sum, local_gather_indices, send_rank_count_cum_sum, send_rank_local_indices, recv_rank_count_cum_sum, recv_rank_local_indices, backward_recv_rank_local_indice, max_token_count_per_rank, expert_count, top_k, ep_rank, ep_size, ) return ( local_gather_indices, send_rank_count_cum_sum, send_rank_local_indices, recv_rank_count_cum_sum, recv_rank_local_indices, backward_recv_rank_local_indice, ) @register_custom_op( "flashinfer::moe_local_gather", mutates_args=["local_expert_ids", "local_scales"], ) def moe_local_gather( recv_rank_cum_sum: torch.Tensor, local_gather_indices: torch.Tensor, gathered_expert_ids: torch.Tensor, gathered_scales: torch.Tensor, local_expert_ids: torch.Tensor, local_scales: torch.Tensor, max_token_count_per_rank: int, expert_count: int, top_k: int, ep_rank: int, ep_size: int, ) -> None: module.moe_local_gather( recv_rank_cum_sum, local_gather_indices, gathered_expert_ids, gathered_scales, local_expert_ids, local_scales, max_token_count_per_rank, expert_count, top_k, ep_rank, ep_size, ) @register_custom_op( "flashinfer::moe_comm", mutates_args=["output"], ) def moe_comm( input: torch.Tensor, send_rank_cum_sum: torch.Tensor, send_indices: torch.Tensor, output: torch.Tensor, recv_rank_cum_sum: torch.Tensor, recv_indices: torch.Tensor, all_workspaces: torch.Tensor, ep_rank: int, ep_size: int, ) -> None: module.moe_comm( input, send_rank_cum_sum, send_indices, output, recv_rank_cum_sum, recv_indices, all_workspaces, ep_rank, ep_size, ) @register_custom_op( "flashinfer::set_moe_max_usable_sm_count", mutates_args=[], ) def set_moe_max_usable_sm_count( max_sm_count: int, ) -> None: module.set_moe_max_usable_sm_count(max_sm_count) @register_custom_op( "flashinfer::get_moe_commworkspace_size_per_rank", mutates_args=[], ) def get_moe_commworkspace_size_per_rank( ep_size: int, ) -> int: return module.get_moe_commworkspace_size_per_rank(ep_size) @register_custom_op( "flashinfer::get_moe_prepare_workspace_size_per_rank", mutates_args=[], ) def get_moe_prepare_workspace_size_per_rank( ep_size: int, ) -> int: return module.get_moe_prepare_workspace_size_per_rank(ep_size) @register_custom_op( "flashinfer::moe_prepare", mutates_args=[], ) def moe_prepare( experts_ids: torch.Tensor, scales: Optional[torch.Tensor], experts_statics: Optional[torch.Tensor], workspace: torch.Tensor, max_token_count_per_rank: int, ep_rank: int, ep_size: int, expert_count: int, slot_count: int, top_k: int, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: return module.moe_prepare( experts_ids, scales, experts_statics, workspace, max_token_count_per_rank, ep_rank, ep_size, expert_count, slot_count, top_k, ) return SimpleNamespace( moe_comm_prepare_indices=moe_comm_prepare_indices, moe_local_gather=moe_local_gather, moe_comm=moe_comm, set_moe_max_usable_sm_count=set_moe_max_usable_sm_count, get_moe_commworkspace_size_per_rank=get_moe_commworkspace_size_per_rank, get_moe_prepare_workspace_size_per_rank=get_moe_prepare_workspace_size_per_rank, moe_prepare=moe_prepare, ) def moe_comm_prepare_indices( gathered_target_rank_ids: torch.Tensor, real_rank_token_count_cum_sum: Optional[torch.Tensor], max_token_count_per_rank: int, expert_count: int, top_k: int, ep_rank: int, ep_size: int, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor ]: return get_comm_alltoall_module().moe_comm_prepare_indices( gathered_target_rank_ids, real_rank_token_count_cum_sum, max_token_count_per_rank, expert_count, top_k, ep_rank, ep_size, ) def moe_local_gather( recv_rank_cum_sum: torch.Tensor, local_gather_indices: torch.Tensor, gathered_expert_ids: torch.Tensor, gathered_scales: torch.Tensor, local_expert_ids: torch.Tensor, local_scales: torch.Tensor, max_token_count_per_rank: int, expert_count: int, top_k: int, ep_rank: int, ep_size: int, ) -> None: get_comm_alltoall_module().moe_local_gather( recv_rank_cum_sum, local_gather_indices, gathered_expert_ids, gathered_scales, local_expert_ids, local_scales, max_token_count_per_rank, expert_count, top_k, ep_rank, ep_size, ) def moe_comm( input: torch.Tensor, send_rank_cum_sum: torch.Tensor, send_indices: torch.Tensor, output: torch.Tensor, recv_rank_cum_sum: torch.Tensor, recv_indices: torch.Tensor, all_workspaces: torch.Tensor, ep_rank: int, ep_size: int, ) -> None: get_comm_alltoall_module().moe_comm( input, send_rank_cum_sum, send_indices, output, recv_rank_cum_sum, recv_indices, all_workspaces, ep_rank, ep_size, ) def set_moe_max_usable_sm_count( max_sm_count: int, ) -> None: get_comm_alltoall_module().set_moe_max_usable_sm_count(max_sm_count) def get_moe_commworkspace_size_per_rank( ep_size: int, ) -> int: return get_comm_alltoall_module().get_moe_commworkspace_size_per_rank(ep_size) def get_moe_prepare_workspace_size_per_rank( ep_size: int, ) -> int: return get_comm_alltoall_module().get_moe_prepare_workspace_size_per_rank(ep_size) def moe_prepare( experts_ids: torch.Tensor, scales: Optional[torch.Tensor], experts_statics: Optional[torch.Tensor], workspace: torch.Tensor, max_token_count_per_rank: int, ep_rank: int, ep_size: int, expert_count: int, slot_count: int, top_k: int, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: return get_comm_alltoall_module().moe_prepare( experts_ids, scales, experts_statics, workspace, max_token_count_per_rank, ep_rank, ep_size, expert_count, slot_count, top_k, ) @dataclass class MoEAlltoallInfo: local_gather_indices: torch.Tensor send_rank_count_cumsum: torch.Tensor send_rank_local_indices: torch.Tensor recv_rank_count_cumsum: torch.Tensor recv_rank_local_indices: torch.Tensor backward_recv_rank_local_indices: torch.Tensor local_token_allocation_count: int class MnnvlMoe: moe_workspace: MnnvlMemory = None moe_prepare_workspace: MnnvlMemory = None moe_workspace_tensor: torch.Tensor = None moe_prepare_workspace_tensor: torch.Tensor = None moe_mapping: Mapping = None @staticmethod def get_moe_workspaces(mapping: Mapping, config: Optional[MnnvlConfig] = None): if MnnvlMoe.moe_workspace is not None: assert mapping == MnnvlMoe.moe_mapping, "only one moe mapping supported now" return MnnvlMoe.moe_workspace_tensor MnnvlMoe.moe_mapping = mapping workspace_size_per_rank = get_moe_commworkspace_size_per_rank(mapping.tp_size) if config: MnnvlMemory.set_comm_from_config(mapping, config) # type: ignore[attr-defined] MnnvlMoe.moe_workspace = MnnvlMemory(mapping, workspace_size_per_rank) MnnvlMoe.moe_workspace_tensor = MnnvlMoe.moe_workspace.as_torch_strided_tensor( torch.uint64 ) return MnnvlMoe.moe_workspace_tensor @staticmethod def get_moe_prepare_workspace( mapping: Mapping, config: Optional[MnnvlConfig] = None ): if MnnvlMoe.moe_prepare_workspace_tensor is not None: assert mapping == MnnvlMoe.moe_mapping, "only one moe mapping supported now" return MnnvlMoe.moe_prepare_workspace_tensor workspace_size_per_rank = get_moe_prepare_workspace_size_per_rank( mapping.tp_size ) if config: MnnvlMemory.set_comm_from_config(mapping, config) # type: ignore[attr-defined] MnnvlMoe.moe_prepare_workspace = MnnvlMemory(mapping, workspace_size_per_rank) MnnvlMoe.moe_prepare_workspace_tensor = ( MnnvlMoe.moe_prepare_workspace.as_torch_strided_tensor(torch.uint64) ) return MnnvlMoe.moe_prepare_workspace_tensor @staticmethod def compute_target_rank_id( token_selected_experts: torch.Tensor, expert_count: int, ep_size: int ): assert expert_count % ep_size == 0, ( "expert_count should be divisible by ep_size" ) expert_per_rank = expert_count // ep_size token_target_rank_ids = token_selected_experts // expert_per_rank return token_target_rank_ids @staticmethod def mnnvl_moe_alltoallv_prepare_without_allgather( expert_ids: torch.Tensor, scales: torch.Tensor, expert_statics: Optional[torch.Tensor], workspace: torch.Tensor, max_token_count_per_rank: int, ep_rank: int, ep_size: int, expert_count: int, slot_count: int, top_k: int, ): ( prepared_local_experts, prepared_local_scales, local_send_rank_count_cumsum, local_send_rank_indices, local_recv_rank_count_cumsum, local_recv_rank_indices, backward_local_recv_rank_indices, gathered_expert_statics, ) = moe_prepare( expert_ids, scales, expert_statics, workspace, max_token_count_per_rank, ep_rank, ep_size, expert_count, slot_count, top_k, ) local_token_allocation_count = max_token_count_per_rank * ep_size # Looks like we don't need this. local_gather_indices = None alltoall_info = MoEAlltoallInfo( local_gather_indices, local_send_rank_count_cumsum, local_send_rank_indices, local_recv_rank_count_cumsum, local_recv_rank_indices, backward_local_recv_rank_indices, local_token_allocation_count, ) return ( alltoall_info, prepared_local_experts, prepared_local_scales, gathered_expert_statics, ) @staticmethod def mnnvl_moe_alltoallv_prepare( gathered_target_rank_ids: torch.Tensor, real_rank_token_count_cumsum: torch.Tensor, gathered_expert_ids: torch.Tensor, gathered_scales: torch.Tensor, max_token_count_per_rank: int, expert_count: int, top_k: int, ep_rank: int, ep_size: int, ): ( local_gather_indices, send_rank_count_cumsum, send_rank_local_indices, recv_rank_count_cumsum, recv_rank_local_indices, backward_recv_rank_local_indices, ) = moe_comm_prepare_indices( gathered_target_rank_ids, real_rank_token_count_cumsum, max_token_count_per_rank, expert_count, top_k, ep_rank, ep_size, ) local_token_allocation_count = max_token_count_per_rank * ep_size local_expert_ids = torch.empty( local_token_allocation_count, top_k, dtype=torch.int32, device=torch.device("cuda"), ) local_scales = torch.empty( local_token_allocation_count, top_k, dtype=torch.float32, device=torch.device("cuda"), ) moe_local_gather( recv_rank_count_cumsum, local_gather_indices, gathered_expert_ids, gathered_scales, local_expert_ids, local_scales, max_token_count_per_rank, expert_count, top_k, ep_rank, ep_size, ) alltoall_info = MoEAlltoallInfo( local_gather_indices, send_rank_count_cumsum, send_rank_local_indices, recv_rank_count_cumsum, recv_rank_local_indices, backward_recv_rank_local_indices, local_token_allocation_count, ) return alltoall_info, local_expert_ids, local_scales @staticmethod def mnnvl_moe_alltoallv( x: torch.Tensor, alltoall_info: MoEAlltoallInfo, workspace: torch.Tensor, ep_rank: int, ep_size: int, ): assert x.dim() == 2, "only 2D tensor supported, please reshape." output_tensor = torch.empty( alltoall_info.local_token_allocation_count, x.shape[1], dtype=x.dtype, device=torch.device("cuda"), ) moe_comm( x, alltoall_info.send_rank_count_cumsum, alltoall_info.send_rank_local_indices, output_tensor, alltoall_info.recv_rank_count_cumsum, alltoall_info.recv_rank_local_indices, workspace, ep_rank, ep_size, ) return output_tensor @staticmethod def mnnvl_moe_alltoallv_combine( x: torch.Tensor, alltoall_info: MoEAlltoallInfo, workspace: torch.Tensor, ep_rank: int, ep_size: int, top_k: int, token_count: int, ): assert x.dim() == 2, "2D tensor supported, please reshape." output_tensor = torch.zeros( token_count * top_k, x.shape[1], dtype=x.dtype, device=torch.device("cuda") ) moe_comm( x, alltoall_info.recv_rank_count_cumsum, alltoall_info.recv_rank_local_indices, output_tensor, alltoall_info.send_rank_count_cumsum, alltoall_info.backward_recv_rank_local_indices, workspace, ep_rank, ep_size, ) return torch.sum( output_tensor.reshape(token_count, top_k, x.shape[1]), dim=1, keepdim=False )