""" Copyright (c) 2025 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import einops import pytest import torch from sink_attention_reference import sink_attention_unified import flashinfer @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("batch_size", [1, 4, 16]) @pytest.mark.parametrize("page_size", [32]) @pytest.mark.parametrize("seq_len", [32, 128, 1024]) @pytest.mark.parametrize("num_qo_heads", [32]) @pytest.mark.parametrize("num_kv_heads", [8, 32]) @pytest.mark.parametrize("head_dim", [64, 128]) def test_blackwell_trtllm_gen_decode_attention_sink( dtype, batch_size, page_size, seq_len, num_qo_heads, num_kv_heads, head_dim, ): seed = 0 torch.manual_seed(seed) device = "cuda:0" seq_lens = torch.full((batch_size,), seq_len, dtype=torch.int32, device=device) blocks_per_seq = (seq_lens + page_size - 1) // page_size max_num_blocks_per_seq = torch.max(blocks_per_seq).item() # Generate unique block IDs for all sequences block_tables = torch.arange( (batch_size * max_num_blocks_per_seq), dtype=torch.int32, device=device ).reshape(batch_size, max_num_blocks_per_seq) # Create separate K and V caches num_tokens = seq_len * batch_size num_blocks = (num_tokens + page_size - 1) // page_size q = torch.randn( batch_size, num_qo_heads, head_dim, dtype=dtype, device=device, ) k_cache = torch.randn( num_blocks, num_kv_heads, page_size, head_dim, dtype=dtype, device=device ) v_cache = torch.randn( num_blocks, num_kv_heads, page_size, head_dim, dtype=dtype, device=device ) sink = torch.rand(num_qo_heads, device=device, dtype=torch.float32) * 5 workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8, device=device) output = flashinfer.decode.trtllm_batch_decode_with_kv_cache( q.contiguous(), (k_cache, v_cache), workspace_buffer, block_tables, seq_lens, seq_len, 1.0, # bmm1_scale 1.0, # bmm2_scale -1, # window_left out_dtype=dtype, sinks=sink, ) k = einops.rearrange( k_cache, "(b num_pages_per_b) h p d -> b (num_pages_per_b p) h d", num_pages_per_b=max_num_blocks_per_seq, ) v = einops.rearrange( v_cache, "(b num_pages_per_b) h p d -> b (num_pages_per_b p) h d", num_pages_per_b=max_num_blocks_per_seq, ) o_ref = sink_attention_unified( q, k, v, sink, -1, False, 1.0, mode="incremental", ) if dtype == torch.float16: atol, rtol = 1e-3, 1e-3 elif dtype == torch.bfloat16: atol, rtol = 1e-2, 1e-2 else: raise ValueError(f"Unsupported dtype: {dtype}") torch.testing.assert_close(o_ref, output, atol=atol, rtol=rtol) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("batch_size", [1, 4, 16]) @pytest.mark.parametrize("page_size", [32]) @pytest.mark.parametrize("seq_len", [32, 128, 1024]) @pytest.mark.parametrize("num_qo_heads", [32]) @pytest.mark.parametrize("num_kv_heads", [8, 32]) @pytest.mark.parametrize("head_dim", [64, 128]) def test_blackwell_trtllm_gen_context_attention_sink( dtype, batch_size, page_size, seq_len, num_qo_heads, num_kv_heads, head_dim, ): seed = 0 torch.manual_seed(seed) device = "cuda:0" seq_lens = torch.full((batch_size,), seq_len, dtype=torch.int32, device=device) blocks_per_seq = (seq_lens + page_size - 1) // page_size max_num_blocks_per_seq = torch.max(blocks_per_seq).item() # Generate unique block IDs for all sequences block_tables = torch.arange( (batch_size * max_num_blocks_per_seq), dtype=torch.int32, device=device ).reshape(batch_size, max_num_blocks_per_seq) # Create separate K and V caches num_tokens = seq_len * batch_size num_blocks = (num_tokens + page_size - 1) // page_size q = torch.randn( num_tokens, num_qo_heads, head_dim, dtype=dtype, device=device, ) k_cache = torch.randn( num_blocks, num_kv_heads, page_size, head_dim, dtype=dtype, device=device ) v_cache = torch.randn( num_blocks, num_kv_heads, page_size, head_dim, dtype=dtype, device=device ) sink = torch.rand(num_qo_heads, device=device, dtype=torch.float32) * 5 workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8, device=device) q_indptr = ( torch.arange(0, batch_size + 1, dtype=torch.int32, device=device) * seq_len ) kv_indptr = ( torch.arange(0, num_blocks + 1, dtype=torch.int32, device=device) * page_size ) output = flashinfer.prefill.trtllm_batch_context_with_kv_cache( q.contiguous(), (k_cache, v_cache), workspace_buffer, block_tables, seq_lens, seq_len, seq_len, 1.0, # bmm1_scale 1.0, # bmm2_scale batch_size, q_indptr, kv_indptr, -1, # window_left out_dtype=dtype, sinks=sink, ) k = einops.rearrange( k_cache, "num_pages h p d -> (num_pages p) h d", ) v = einops.rearrange( v_cache, "num_pages h p d -> (num_pages p) h d", ) print(q.shape, k.shape, v.shape) o_ref = sink_attention_unified( q, k, v, sink, -1, True, 1.0, mode="prefill", batch_size=batch_size, ) if dtype == torch.float16: atol, rtol = 1e-3, 1e-3 elif dtype == torch.bfloat16: atol, rtol = 1e-2, 1e-2 else: raise ValueError(f"Unsupported dtype: {dtype}") torch.testing.assert_close(o_ref, output, atol=atol, rtol=rtol)