""" Copyright (c) 2024 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pytest import torch import flashinfer @pytest.mark.parametrize("batch_size", [12, 17]) @pytest.mark.parametrize("qo_len", [1, 7, 53]) @pytest.mark.parametrize("kv_len", [54, 97]) @pytest.mark.parametrize("page_size", [1, 8, 16]) @pytest.mark.parametrize("num_kv_heads", [4]) @pytest.mark.parametrize("num_qo_heads", [4, 32]) @pytest.mark.parametrize("head_dim", [128, 256]) @pytest.mark.parametrize("kv_layout", ["HND", "NHD"]) @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn, torch.float8_e5m2]) def test_batch_prefill_with_paged_kv_cache_fp8_calibration_scale( batch_size, qo_len, kv_len, page_size, num_kv_heads, num_qo_heads, head_dim, kv_layout, dtype, ): torch.manual_seed(42) q = torch.randn( batch_size * qo_len, num_qo_heads, head_dim, dtype=torch.float16 ).to(0) num_pages_per_seq = (kv_len + page_size - 1) // page_size total_num_pages = num_pages_per_seq * batch_size kv_data = ( 0.05 * torch.randn( total_num_pages, 2, num_kv_heads, page_size, head_dim, dtype=torch.float16 ).to(0) if kv_layout == "HND" else 0.05 * torch.randn( total_num_pages, 2, page_size, num_kv_heads, head_dim, dtype=torch.float16 ).to(0) ) qo_indptr = torch.arange(0, batch_size + 1).to(0).int() * qo_len kv_indptr = torch.arange(0, batch_size + 1).to(0).int() * num_pages_per_seq kv_indices = torch.arange(0, total_num_pages).to(0).int() kv_last_page_len = torch.full( (batch_size,), (kv_len - 1) % page_size + 1, dtype=torch.int32 ).to(0) workspace_buffer = torch.empty(32 * 1024 * 1024, dtype=torch.int8).to(0) wrapper_f16 = flashinfer.BatchPrefillWithPagedKVCacheWrapper( workspace_buffer, kv_layout ) wrapper_f16.plan( qo_indptr, kv_indptr, kv_indices, kv_last_page_len, num_qo_heads, num_kv_heads, head_dim, page_size, q_data_type=torch.float16, kv_data_type=torch.float16, ) o_fp16 = wrapper_f16.run(q, kv_data) k_data, v_data = torch.chunk(kv_data, 2, dim=1) k_scale = k_data.amax().item() / 256 v_scale = v_data.amax().item() / 256 k_fp8 = (k_data / k_scale).to(dtype) v_fp8 = (v_data / v_scale).to(dtype) kv_data_fp8 = torch.cat([k_fp8, v_fp8], dim=1) wrapper_f8 = flashinfer.BatchPrefillWithPagedKVCacheWrapper( workspace_buffer, kv_layout ) wrapper_f8.plan( qo_indptr, kv_indptr, kv_indices, kv_last_page_len, num_qo_heads, num_kv_heads, head_dim, page_size, q_data_type=torch.float16, kv_data_type=dtype, ) o_fp8 = wrapper_f8.run( q, kv_data_fp8.to(dtype), k_scale=k_scale, v_scale=v_scale, ) torch.testing.assert_close(o_fp16, o_fp8, atol=1e-2, rtol=2e-1) @pytest.mark.parametrize("batch_size", [12, 17]) @pytest.mark.parametrize("kv_len", [54, 97]) @pytest.mark.parametrize("page_size", [1, 8, 16]) @pytest.mark.parametrize("num_kv_heads", [4]) @pytest.mark.parametrize("num_qo_heads", [4, 32]) @pytest.mark.parametrize("head_dim", [128, 256]) @pytest.mark.parametrize("kv_layout", ["HND", "NHD"]) @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn, torch.float8_e5m2]) def test_batch_decode_with_prefill_with_paged_kv_cache( batch_size, kv_len, page_size, num_kv_heads, num_qo_heads, head_dim, kv_layout, dtype, ): torch.manual_seed(42) q = torch.randn(batch_size, num_qo_heads, head_dim, dtype=torch.float16).to(0) num_pages_per_seq = (kv_len + page_size - 1) // page_size total_num_pages = num_pages_per_seq * batch_size kv_data = ( 0.1 * torch.randn( total_num_pages, 2, num_kv_heads, page_size, head_dim, dtype=torch.float16 ).to(0) if kv_layout == "HND" else 0.1 * torch.randn( total_num_pages, 2, page_size, num_kv_heads, head_dim, dtype=torch.float16 ).to(0) ).to(dtype) qo_indptr = torch.arange(0, batch_size + 1).to(0).int() kv_indptr = torch.arange(0, batch_size + 1).to(0).int() * num_pages_per_seq kv_indices = torch.arange(0, total_num_pages).to(0).int() kv_last_page_len = torch.full( (batch_size,), (kv_len - 1) % page_size + 1, dtype=torch.int32 ).to(0) workspace_buffer = torch.empty(32 * 1024 * 1024, dtype=torch.int8).to(0) wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper( workspace_buffer, kv_layout ) wrapper.plan( qo_indptr, kv_indptr, kv_indices, kv_last_page_len, num_qo_heads, num_kv_heads, head_dim, page_size, q_data_type=torch.float16, kv_data_type=dtype, ) o_fp8 = wrapper.run(q, kv_data) decode_wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper( workspace_buffer, kv_layout ) decode_wrapper.plan( kv_indptr, kv_indices, kv_last_page_len, num_qo_heads, num_kv_heads, head_dim, page_size, q_data_type=torch.float16, kv_data_type=dtype, ) o_decode_fp8 = decode_wrapper.run(q, kv_data) torch.testing.assert_close(o_decode_fp8, o_fp8, atol=1e-2, rtol=1e-2) if __name__ == "__main__": test_batch_prefill_with_paged_kv_cache_fp8_calibration_scale( 12, 7, 54, 1, 4, 4, 128, "NHD", torch.float8_e5m2 ) test_batch_decode_with_prefill_with_paged_kv_cache( 12, 54, 1, 4, 4, 128, "NHD", torch.float8_e5m2 )