#include #include #include #include #include #include #include #include #ifdef BENCHMARK_INTEL_DNNL #include #endif // BENCHMARK_INTEL_DNNL #include "utils.h" #include "xnnpack.h" #include "xnnpack/common.h" #include "xnnpack/microfnptr.h" #include "xnnpack/microparams-init.h" #include "xnnpack/raddexpminusmax.h" #include "xnnpack/raddextexp.h" #include "xnnpack/raddstoreexpminusmax.h" #include "xnnpack/vbinary.h" #include "xnnpack/reduce.h" #include "xnnpack/vscaleexpminusmax.h" #include "xnnpack/vscaleextexp.h" #include "xnnpack/buffer.h" #ifdef BENCHMARK_INTEL_DNNL // Macros to help transition from oneDNN v2 to v3. #if DNNL_VERSION_MAJOR == 2 #define DNNL_MEMORY_DESC_INIT dnnl_memory_desc_init_by_tag #define DNNL_MEMORY_CREATE(mem, mem_desc, engine, handle) \ dnnl_memory_create(&mem, &mem_desc, engine, handle) #else // DNNL_VERSION_MAJOR == 3 #define DNNL_MEMORY_DESC_INIT dnnl_memory_desc_create_with_tag #define DNNL_MEMORY_CREATE(mem, mem_desc, engine, handle) \ dnnl_memory_create(&mem, mem_desc, engine, handle) #endif // DNNL_VERSION_MAJOR == 2 static void DNNLSoftArgMax( benchmark::State& state) { const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); xnnpack::Buffer x(elements); xnnpack::Buffer y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); dnnl_engine_t engine; if (dnnl_engine_create(&engine, dnnl_cpu, 0) != dnnl_success) { state.SkipWithError("failed to create CPU engine"); return; } dnnl_dim_t input_output_shape[1] = { static_cast(elements) }; dnnl_memory_desc_t memory_descriptor = { 0 }; if (DNNL_MEMORY_DESC_INIT( &memory_descriptor, 1, input_output_shape, dnnl_f32, dnnl_x) != dnnl_success) { state.SkipWithError("failed to create input memory descriptor"); return; } dnnl_memory_t input_memory = nullptr; if (DNNL_MEMORY_CREATE( input_memory, memory_descriptor, engine, x.data()) != dnnl_success) { state.SkipWithError("failed to create input memory"); return; } dnnl_memory_t output_memory = nullptr; if (DNNL_MEMORY_CREATE( output_memory, memory_descriptor, engine, y.data()) != dnnl_success) { state.SkipWithError("failed to create output memory"); return; } #if DNNL_VERSION_MAJOR == 2 dnnl_softmax_desc_t softmax_forward_descriptor = {}; if (dnnl_softmax_forward_desc_init( &softmax_forward_descriptor, dnnl_forward_inference, &memory_descriptor, 0) != dnnl_success) { state.SkipWithError("failed to create SoftMax forward descriptor"); return; } #endif // DNNL_VERSION_MAJOR == 2 dnnl_primitive_desc_t softmax_primitive_descriptor = nullptr; #if DNNL_VERSION_MAJOR == 2 if (dnnl_primitive_desc_create( &softmax_primitive_descriptor, &softmax_forward_descriptor, nullptr /* primitive attributes */, engine, nullptr /* hint */) != dnnl_success) #else // DNNL_VERSION_MAJOR == 3 if (dnnl_softmax_forward_primitive_desc_create( &softmax_primitive_descriptor, engine, dnnl_forward_inference, dnnl_softmax_accurate, /*src_desc=*/ memory_descriptor, /*dst_dsc=*/ memory_descriptor, /*softmax_axis=*/ 0, /*attr=*/ nullptr) != dnnl_success) #endif // DNNL_VERSION_MAJOR == 2 { state.SkipWithError("failed to create SoftMax primitive descriptor"); return; } dnnl_primitive_t softmax_primitive = nullptr; if (dnnl_primitive_create( &softmax_primitive, softmax_primitive_descriptor) != dnnl_success) { state.SkipWithError("failed to create SoftMax primitive"); return; } dnnl_exec_arg_t softmax_args[2] = { {DNNL_ARG_SRC, input_memory}, {DNNL_ARG_DST, output_memory}, }; dnnl_stream_t stream = nullptr; if (dnnl_stream_create(&stream, engine, dnnl_stream_default_flags) != dnnl_success) { state.SkipWithError("failed to create stream"); return; } size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); if (dnnl_primitive_execute( softmax_primitive, stream, 2, softmax_args) != dnnl_success) { state.SkipWithError("failed to execute SoftMax"); return; } const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } if (dnnl_stream_destroy(stream) != dnnl_success) { state.SkipWithError("failed to destroy stream"); return; } if (dnnl_primitive_desc_destroy(softmax_primitive_descriptor) != dnnl_success) { state.SkipWithError("failed to destroy SoftMax primitive descriptor"); return; } if (dnnl_primitive_destroy(softmax_primitive) != dnnl_success) { state.SkipWithError("failed to destroy SoftMax primitive"); return; } if (dnnl_memory_destroy(input_memory) != dnnl_success) { state.SkipWithError("failed to destroy input memory"); return; } if (dnnl_memory_destroy(output_memory) != dnnl_success) { state.SkipWithError("failed to destroy output memory"); return; } if (dnnl_engine_destroy(engine) != dnnl_success) { state.SkipWithError("failed to destroy engine"); return; } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } #endif // BENCHMARK_INTEL_DNNL static void ThreePassSoftMaxWithRecomputing( benchmark::State& state, xnn_f32_rmax_ukernel_fn rmax, xnn_init_f32_default_params_fn init_rmax_params, xnn_f32_raddexpminusmax_ukernel_fn raddexpminusmax, xnn_f32_vscaleexpminusmax_ukernel_fn vscaleexpminusmax, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); xnnpack::Buffer x(elements); xnnpack::Buffer y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); benchmark::utils::DisableDenormals(); xnn_f32_default_params rmax_params; if (init_rmax_params) { init_rmax_params(&rmax_params); } size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); float x_max; rmax(elements * sizeof(float), x.data(), &x_max, &rmax_params); float y_sum; raddexpminusmax(elements * sizeof(float), x.data(), &y_sum, x_max); vscaleexpminusmax(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, x_max, 1.0f / y_sum); const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void ThreePassSoftMaxWithReloading( benchmark::State& state, xnn_f32_rmax_ukernel_fn rmax, xnn_init_f32_default_params_fn init_rmax_params, xnn_f32_raddstoreexpminusmax_ukernel_fn raddstoreexpminusmax, xnn_init_f32_expminus_params_fn init_expminus_params, xnn_f32_vbinary_ukernel_fn vmulc, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); xnnpack::Buffer x(elements); xnnpack::Buffer y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); benchmark::utils::DisableDenormals(); xnn_f32_default_params rmax_params; xnn_f32_default_params expminus_params; if (init_rmax_params) { init_rmax_params(&rmax_params); } if (init_expminus_params) { init_expminus_params(&expminus_params); } size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); float x_max; rmax(elements * sizeof(float), x.data(), &x_max, &rmax_params); float y_sum; raddstoreexpminusmax(elements * sizeof(float), x.data(), &x_max, y.data() + packed_elements * buffer_index, &y_sum, &expminus_params); const float inv_y_sum = 1.0f / y_sum; vmulc(elements * sizeof(float), y.data() + packed_elements * buffer_index, &inv_y_sum, y.data() + packed_elements * buffer_index, nullptr); const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void TwoPassSoftMax( benchmark::State& state, xnn_f32_raddextexp_ukernel_fn raddextexp, xnn_f32_vscaleextexp_ukernel_fn vscaleextexp, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check != nullptr && !isa_check(state)) { return; } const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); xnnpack::Buffer x(elements); xnnpack::Buffer y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); benchmark::utils::DisableDenormals(); size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); float scale[2]; raddextexp(elements * sizeof(float), x.data(), scale); vscaleextexp(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, 1.0f / scale[0], -scale[1]); const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void CharacteristicArguments(benchmark::internal::Benchmark* b) { // Size Iterations Parameters used by Stable Diffusion b->Arg( 128); // 1 b->Arg( 154); // 421 b->Arg( 512); // 20 b->Arg(2048); // 80 b->Arg(8192); // 320 for (int32_t n = 10000; n <= 1000000; n *= 10) { b->Arg(n); } } #ifdef BENCHMARK_INTEL_DNNL BENCHMARK(DNNLSoftArgMax)->Apply(CharacteristicArguments)->UseManualTime(); #endif #if XNN_ENABLE_AVX512F && (XNN_ARCH_X86 || XNN_ARCH_X86_64) BENCHMARK_CAPTURE(TwoPassSoftMax, avx512f_p5_scalef, xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_u144_acc3, xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_u16, benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx512f_p5_scalef, xnn_f32_rmax_ukernel__avx512f_u64_acc4, (xnn_init_f32_default_params_fn) nullptr, xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_u128_acc4, xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_u16, benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx512f_p5_scalef, xnn_f32_rmax_ukernel__avx512f_u64_acc4, (xnn_init_f32_default_params_fn) nullptr, xnn_f32_raddstoreexpminusmax_ukernel__avx512f_rr1_p5_scalef_u64_acc2, nullptr, xnn_f32_vmulc_ukernel__avx512f_u32, benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); #endif // XNN_ENABLE_AVX512F && (XNN_ARCH_X86 || XNN_ARCH_X86_64) #if XNN_ARCH_X86 || XNN_ARCH_X86_64 BENCHMARK_CAPTURE(TwoPassSoftMax, avx2_p5, xnn_f32_raddextexp_ukernel__avx2_p5_u96, xnn_f32_vscaleextexp_ukernel__avx2_p5_u32, benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx2_p5, xnn_f32_rmax_ukernel__avx_u32_acc4, (xnn_init_f32_default_params_fn) nullptr, xnn_f32_raddexpminusmax_ukernel__avx2_p5_u96, xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_u24, benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx2_p5, xnn_f32_rmax_ukernel__avx_u32_acc4, (xnn_init_f32_default_params_fn) nullptr, xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_u32_acc2, nullptr, xnn_f32_vmulc_ukernel__avx_u16, benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 #if XNN_ENABLE_RISCV_VECTOR && XNN_ARCH_RISCV BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, rvv_p6_rmax_m8_exp_m4_vmulc_m8, xnn_f32_rmax_ukernel__rvv_u8v, (xnn_init_f32_default_params_fn) nullptr, xnn_f32_raddstoreexpminusmax_ukernel__rvv_rr2_p6_u4v, nullptr, xnn_f32_vmulc_ukernel__rvv_u8v, benchmark::utils::CheckRVV)->Apply(CharacteristicArguments)->UseManualTime(); #endif // XNN_ENABLE_RISCV_VECTOR && XNN_ARCH_RISCV #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif