// Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/node-type.h" #include "xnnpack/subgraph.h" TEST(AveragePooling2DTestF32, Reshape) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); std::vector dims{2, 3, 4, 5}; uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); const size_t pooling_height = 2; const size_t pooling_width = 2; const size_t stride_height = 2; const size_t stride_width = 2; const float output_min = -std::numeric_limits::infinity(); const float output_max = std::numeric_limits::infinity(); ASSERT_EQ(xnn_status_success, xnn_define_average_pooling_2d( subgraph, /*input_padding_top=*/0, /*input_padding_right=*/0, /*input_padding_bottom=*/0, /*input_padding_left=*/0, pooling_height, pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_average_pooling_2d); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); ASSERT_EQ(node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); dims[0] = 7; dims[3] = 9; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, 0, dims.size(), dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; ASSERT_EQ(output_shape->dim[0], dims[0]); ASSERT_EQ(output_shape->dim[1], dims[1] - 2); ASSERT_EQ(output_shape->dim[2], dims[2] - 2); ASSERT_EQ(output_shape->dim[3], dims[3]); } TEST(AveragePooling2DTestF32, ReshapeWithPadding) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); std::vector dims{2, 3, 4, 5}; std::vector output_dims{2, 3, 5, 5}; uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); const size_t pooling_height = 2; const size_t pooling_width = 2; const size_t stride_height = 2; const size_t stride_width = 2; const float output_min = -std::numeric_limits::infinity(); const float output_max = std::numeric_limits::infinity(); ASSERT_EQ(xnn_status_success, xnn_define_average_pooling_2d( subgraph, /*input_padding_top=*/3, /*input_padding_right=*/2, /*input_padding_bottom=*/1, /*input_padding_left=*/4, pooling_height, pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_average_pooling_2d); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); ASSERT_EQ(node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); dims[0] = 2; dims[1] = 2; dims[2] = 8; dims[3] = 17; ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, 0, dims.size(), dims.data())); ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; ASSERT_EQ(output_shape->dim[0], dims[0]); ASSERT_EQ(output_shape->dim[1], 3); ASSERT_EQ(output_shape->dim[2], 7); ASSERT_EQ(output_shape->dim[3], dims[3]); }