// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include "xnnpack.h" #include "xnnpack/math.h" #include "xnnpack/microfnptr.h" #include "xnnpack/buffer.h" #include "replicable_random_device.h" class IBilinearMicrokernelTester { public: IBilinearMicrokernelTester& pixels(uint32_t pixels) { assert(pixels >= 1); this->pixels_ = pixels; return *this; } uint32_t pixels() const { return this->pixels_; } IBilinearMicrokernelTester& channels(uint32_t channels) { assert(channels >= 1); this->channels_ = channels; return *this; } uint32_t channels() const { return this->channels_; } IBilinearMicrokernelTester& input_offset(uint32_t input_offset) { this->input_offset_ = input_offset; return *this; } uint32_t input_offset() const { return this->input_offset_; } IBilinearMicrokernelTester& output_stride(uint32_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } uint32_t output_stride() const { if (this->output_stride_ == 0) { return channels(); } else { assert(this->output_stride_ >= channels()); return this->output_stride_; } } IBilinearMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } size_t iterations() const { return this->iterations_; } IBilinearMicrokernelTester& input_stride(uint32_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } uint32_t input_stride() const { if (this->input_stride_ == 0) { return 4 * pixels(); } else { assert(this->input_stride_ >= 4 * pixels()); return this->input_stride_; } } void Test(xnn_f16_ibilinear_ukernel_fn ibilinear) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist(0.1f, 1.0f); xnnpack::Buffer indirection(pixels() * 4); xnnpack::Buffer input(XNN_EXTRA_BYTES / sizeof(xnn_float16) + indirection.size() * channels()); xnnpack::Buffer packed_weights(pixels() * 2); xnnpack::Buffer output((pixels() - 1) * output_stride() + channels()); xnnpack::Buffer output_ref(pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); }); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); // Compute reference results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { const float alpha_h = packed_weights[i * 2 + 0]; const float alpha_v = packed_weights[i * 2 + 1]; output_ref[i * channels() + c] = indirection[i * 4 + 0][c + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) + indirection[i * 4 + 1][c + input_offset()] * alpha_h * (1.0f - alpha_v) + indirection[i * 4 + 2][c + input_offset()] * (1.0f - alpha_h) * alpha_v + indirection[i * 4 + 3][c + input_offset()] * alpha_h * alpha_v; } } // Call optimized micro-kernel. ibilinear( pixels(), channels() * sizeof(xnn_float16), reinterpret_cast(indirection.data()), input_offset() * sizeof(xnn_float16), packed_weights.data(), output.data(), (output_stride() - channels()) * sizeof(xnn_float16)); // Verify results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR( output[i * output_stride() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-2f) << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); } } } } void Test(xnn_f32_ibilinear_ukernel_fn ibilinear) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist; xnnpack::Buffer indirection(pixels() * 4); xnnpack::Buffer input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels()); xnnpack::Buffer packed_weights(pixels() * 2); xnnpack::Buffer output((pixels() - 1) * output_stride() + channels()); xnnpack::Buffer output_ref(pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); }); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); // Compute reference results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { const float alpha_h = packed_weights[i * 2 + 0]; const float alpha_v = packed_weights[i * 2 + 1]; output_ref[i * channels() + c] = indirection[i * 4 + 0][c + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) + indirection[i * 4 + 1][c + input_offset()] * alpha_h * (1.0f - alpha_v) + indirection[i * 4 + 2][c + input_offset()] * (1.0f - alpha_h) * alpha_v + indirection[i * 4 + 3][c + input_offset()] * alpha_h * alpha_v; } } // Call optimized micro-kernel. ibilinear( pixels(), channels() * sizeof(float), indirection.data(), input_offset() * sizeof(float), packed_weights.data(), output.data(), (output_stride() - channels()) * sizeof(float)); // Verify results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { EXPECT_NEAR( output_ref[i * channels() + c], output[i * output_stride() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-4) << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); } } } } void Test(xnn_s8_ibilinear_ukernel_fn ibilinear) const { xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution i8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::uniform_int_distribution w11dist(0, 2047); xnnpack::Buffer indirection(pixels() * 4); xnnpack::Buffer input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels()); xnnpack::Buffer packed_weights(pixels() * 2); xnnpack::Buffer output((pixels() - 1) * output_stride() + channels()); xnnpack::Buffer output_ref(pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return w11dist(rng); }); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); // Compute reference results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { const int32_t alpha_h = packed_weights[i * 2 + 0]; const int32_t alpha_v = packed_weights[i * 2 + 1]; const int32_t acc = math_asr_s32( int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) + int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) + int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v + int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v + 2097152, 22); ASSERT_GE(acc, std::numeric_limits::min()); ASSERT_LE(acc, std::numeric_limits::max()); output_ref[i * channels() + c] = (int8_t) acc; } } // Call optimized micro-kernel. ibilinear( pixels(), channels() * sizeof(int8_t), indirection.data(), input_offset() * sizeof(int8_t), packed_weights.data(), output.data(), (output_stride() - channels()) * sizeof(int8_t)); // Verify results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { EXPECT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c])) << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); } } } } void Test(xnn_u8_ibilinear_ukernel_fn ibilinear) const { xnnpack::ReplicableRandomDevice rng; std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::uniform_int_distribution w11dist(0, 2047); xnnpack::Buffer indirection(pixels() * 4); xnnpack::Buffer input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels()); xnnpack::Buffer packed_weights(pixels() * 2); xnnpack::Buffer output((pixels() - 1) * output_stride() + channels()); xnnpack::Buffer output_ref(pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return w11dist(rng); }); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); // Compute reference results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { const uint32_t alpha_h = uint32_t(int32_t(packed_weights[i * 2 + 0])); const uint32_t alpha_v = uint32_t(int32_t(packed_weights[i * 2 + 1])); const uint32_t acc = (2097152 + int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) + int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) + int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v + int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v) >> 22; ASSERT_LE(acc, std::numeric_limits::max()); output_ref[i * channels() + c] = (uint8_t) acc; } } // Call optimized micro-kernel. ibilinear( pixels(), channels() * sizeof(uint8_t), indirection.data(), input_offset() * sizeof(uint8_t), packed_weights.data(), output.data(), (output_stride() - channels()) * sizeof(uint8_t)); // Verify results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { EXPECT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c])) << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); } } } } void TestCHW(xnn_f16_ibilinear_chw_ukernel_fn ibilinear) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist(0.1f, 1.0f); xnnpack::Buffer indirection(pixels() * 2); xnnpack::Buffer input(XNN_EXTRA_BYTES / sizeof(xnn_float16) + (channels() - 1) * input_stride() + 4 * pixels()); xnnpack::Buffer packed_weights(pixels() * 2); xnnpack::Buffer output(pixels() * channels()); xnnpack::Buffer output_ref(pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); }); // Indirection will point to the even ("left") pixels of the input. // The kernels will expect "right" pixels to be placed right next to them. for (size_t i = 0; i < indirection.size(); i++) { const xnn_float16* left_corner = input.data() + 2 * i - input_offset(); indirection[i] = left_corner; } std::shuffle(indirection.begin(), indirection.end(), rng); // Compute reference results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { const float alpha_h = packed_weights[i * 2 + 0]; const float alpha_v = packed_weights[i * 2 + 1]; // `c * pixels() + i` because the output is NCHW. output_ref[c * pixels() + i] = // `c * indirection.size()` because the input is NCHW. (indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) + (indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()] * alpha_h * (1.0f - alpha_v) + (indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * alpha_v + (indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()] * alpha_h * alpha_v; } } // Call optimized micro-kernel. ibilinear( pixels(), channels(), reinterpret_cast(indirection.data()), input_offset() * sizeof(xnn_float16), packed_weights.data(), output.data(), input_stride() * sizeof(xnn_float16)); // Verify results. for (size_t c = 0; c < channels(); c++) { for (size_t i = 0; i < pixels(); i++) { ASSERT_NEAR( output[c * pixels() + i], output_ref[c * pixels() + i], std::abs(output_ref[c * pixels() + i]) * 1.0e-2f) << "i = " << i << ", channel = " << c; } } } } void TestCHW(xnn_f32_ibilinear_chw_ukernel_fn ibilinear) const { xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist; xnnpack::Buffer indirection(pixels() * 2); xnnpack::Buffer input(XNN_EXTRA_BYTES / sizeof(float) + (channels() - 1) * input_stride() + 4 * pixels()); xnnpack::Buffer packed_weights(pixels() * 2); xnnpack::Buffer output(pixels() * channels()); xnnpack::Buffer output_ref(pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); }); // Indirection will point to the even ("left") pixels of the input. // The kernels will expect "right" pixels to be placed right next to them. for (size_t i = 0; i < indirection.size(); i++) { const float* left_corner = input.data() + 2 * i - input_offset(); indirection[i] = left_corner; } std::shuffle(indirection.begin(), indirection.end(), rng); // Compute reference results. for (size_t i = 0; i < pixels(); i++) { for (size_t c = 0; c < channels(); c++) { const float alpha_h = packed_weights[i * 2 + 0]; const float alpha_v = packed_weights[i * 2 + 1]; // `c * pixels() + i` because the output is NCHW. output_ref[c * pixels() + i] = // `c * indirection.size()` because the input is NCHW. (indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) + (indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()] * alpha_h * (1.0f - alpha_v) + (indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * alpha_v + (indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()] * alpha_h * alpha_v; } } // Call optimized micro-kernel. ibilinear( pixels(), channels(), indirection.data(), input_offset() * sizeof(float), packed_weights.data(), output.data(), input_stride() * sizeof(float)); // Verify results. for (size_t c = 0; c < channels(); c++) { for (size_t i = 0; i < pixels(); i++) { EXPECT_NEAR( output_ref[c * pixels() + i], output[c * pixels() + i], std::abs(output_ref[c * pixels() + i]) * 1.0e-4) << "i = " << i << ", channel = " << c; } } } } private: uint32_t channels_{1}; uint32_t pixels_{1}; uint32_t output_stride_{0}; uint32_t input_stride_{0}; uint32_t input_offset_{0}; size_t iterations_{3}; };