// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include "xnnpack/math.h" #include "xnnpack/microfnptr.h" #include "xnnpack/microparams.h" #include "xnnpack/buffer.h" #include "replicable_random_device.h" class SpMMMicrokernelTester { public: SpMMMicrokernelTester& mr(size_t mr) { this->mr_ = mr; return *this; } size_t mr() const { return this->mr_; } SpMMMicrokernelTester& nr(size_t nr) { this->nr_ = nr; return *this; } size_t nr() const { return this->nr_; } SpMMMicrokernelTester& m(size_t m) { this->m_ = m; return *this; } size_t m() const { return this->m_; } SpMMMicrokernelTester& n(size_t n) { this->n_ = n; return *this; } size_t n() const { return this->n_; } SpMMMicrokernelTester& k(size_t k) { this->k_ = k; return *this; } size_t k() const { return this->k_; } SpMMMicrokernelTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } size_t output_stride() const { if (this->output_stride_ == 0) { return m(); } else { assert(this->output_stride_ >= m()); return this->output_stride_; } } SpMMMicrokernelTester& sparsity(float sparsity) { this->sparsity_ = sparsity; return *this; } float sparsity() const { return this->sparsity_; } SpMMMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } uint8_t qmin() const { return this->qmin_; } SpMMMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } uint8_t qmax() const { return this->qmax_; } SpMMMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } size_t iterations() const { return this->iterations_; } void Test(xnn_f32_spmm_minmax_ukernel_fn spmm, xnn_init_f32_minmax_params_fn init_params) const { ASSERT_GE(m(), 1); ASSERT_GE(n(), 1); ASSERT_GE(k(), 1); xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist; std::uniform_real_distribution pdist; xnnpack::Buffer input(k() * m()); // Think of b as (n/nr + n % nr) x k, expansion happens later. const size_t ncols = n() / nr() + n() % nr(); xnnpack::Buffer b(ncols * k()); xnnpack::Buffer bias(n()); // Number of non-zero weights per N (output channel). xnnpack::Buffer nmap(n()); // Mapping from index of non-zero weight to increment of K (input channel) following this index. // Micro-kernel can access one element beyond w and dmap for software pipelining. xnnpack::Buffer dmap(n() * k() + 1); xnnpack::Buffer w(n() * k() + n() + 1); xnnpack::Buffer output((n() - 1) * output_stride() + m()); xnnpack::Buffer output_ref(n() * m()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(b.begin(), b.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::fill(nmap.begin(), nmap.end(), 0); std::fill(dmap.begin(), dmap.end(), 0); std::fill(w.begin(), w.end(), 0.0f); for (float& b_value : b) { if (pdist(rng) <= sparsity()) { b_value = 0.0f; } } uint32_t nnz = 0; uint32_t wcnt = 0; size_t last_kk = 0; bool first_nzz = true; size_t first_kk = 0; for (size_t nn = 0; nn < n() / nr(); nn++) { for (size_t i = 0; i < nr(); ++i) w[wcnt++] = bias[nr() * nn + i]; for (size_t kk = 0; kk < k(); kk++) { if (b[nn * k() + kk] != 0.0f) { // Every non-zero actually corresponds to nr adjacent non-zeros. for (size_t i = 0; i < nr(); ++i) w[wcnt++] = b[nn * k() + kk] + static_cast(i); // Skip the very first non-zero weight as we record only the difference. if (first_nzz) { first_kk = kk; } else { const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float)); dmap[nnz++] = increment; } last_kk = kk; first_nzz = false; nmap[nn] += 1; } } } // now we've constructed the matrix for the blocked part and switch to the // leftovers, which we do as nr=1 always. for (size_t nn = n() / nr(); nn < ncols; nn++) { w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())]; for (size_t kk = 0; kk < k(); kk++) { if (b[nn * k() + kk] != 0.0f) { // Every non-zero actually corresponds to nr adjacent non-zeros. w[wcnt++] = b[nn * k() + kk]; // Skip the very first non-zero weight as we record only the difference. if (first_nzz) { first_kk = kk; } else { const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float)); dmap[nnz++] = increment; } last_kk = kk; first_nzz = false; nmap[nn] += 1; } } } // In the end, we must return input pointer to the initial value. const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(float)); dmap[nnz++] = increment; // Generate expanded b which will be used in reference calculation. // Everywhere there is input non-zero in the original we copy it and add an // adjacent non-zero with incremented weight value. xnnpack::Buffer b_full(n() * k()); if (nr() == 1) { std::copy(b.begin(), b.end(), b_full.begin()); } else { std::fill(b_full.begin(), b_full.end(), 0.0f); for (size_t nn = 0; nn < n() / nr(); nn++) { for (size_t kk = 0; kk < k(); kk++) { if (b[nn * k() + kk] != 0.0f) { for (size_t i = 0; i < nr(); ++i) b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast(i); } } } for (size_t nn = n() / nr(); nn < ncols; nn++) { for (size_t kk = 0; kk < k(); kk++) { if (b[nn * k() + kk] != 0.0f) { b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk]; } } } } for (size_t oc = 0; oc < n(); oc++) { for (size_t pxb = 0; pxb < m(); pxb++) { output_ref[oc * m() + pxb] = bias[oc]; for (size_t ic = 0; ic < k(); ic++) { output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic]; } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& output_value : output_ref) { output_value = std::min(std::max(output_value, output_min), output_max); } // Prepare parameters. xnn_f32_minmax_params params; init_params(¶ms, output_min, output_max); spmm(m() * sizeof(float), n(), input.data() + first_kk * m(), w.data(), dmap.data(), nmap.data(), output.data(), output_stride() * sizeof(float), ¶ms); // Validate micro-kernel outputs. for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_NEAR( output[j * output_stride() + i], output_ref[j * m() + i], std::abs(output_ref[j * m() + i]) * 1.0e-6f) << "at M index " << i << " / " << m() << " (tile " << mr() << ")" << ", N index " << j << " / " << n() << " (tile " << nr() << ")" << ", K = " << k(); } } } } void Test(xnn_f16_spmm_minmax_ukernel_fn spmm, xnn_init_f16_minmax_params_fn init_params) const { ASSERT_GE(m(), 1); ASSERT_GE(n(), 1); ASSERT_GE(k(), 1); xnnpack::ReplicableRandomDevice rng; std::uniform_real_distribution f32dist; std::uniform_real_distribution pdist; xnnpack::Buffer input(k() * m()); // Think of b as (n/nr + n % nr) x k, expansion happens later. const size_t ncols = n() / nr() + n() % nr(); xnnpack::Buffer b(ncols * k()); xnnpack::Buffer bias(n()); // Number of non-zero weights per N (output channel). xnnpack::Buffer nmap(n()); // Mapping from index of non-zero weight to increment of K (input channel) following this index. // Micro-kernel can access one element beyond w and dmap for software pipelining. xnnpack::Buffer dmap(n() * k() + 1); xnnpack::Buffer w(n() * k() + n() + 1); xnnpack::Buffer output((n() - 1) * output_stride() + m()); xnnpack::Buffer output_ref(n() * m()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(b.begin(), b.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::fill(nmap.begin(), nmap.end(), 0); std::fill(dmap.begin(), dmap.end(), 0); std::fill(w.begin(), w.end(), 0); for (xnn_float16& b_value : b) { if (pdist(rng) <= sparsity()) { b_value = 0; } } uint32_t nnz = 0; uint32_t wcnt = 0; size_t last_kk = 0; bool first_nzz = true; size_t first_kk = 0; for (size_t nn = 0; nn < n() / nr(); nn++) { for (size_t i = 0; i < nr(); ++i) w[wcnt++] = bias[nr() * nn + i]; for (size_t kk = 0; kk < k(); kk++) { if (!xnn_float16_is_zero(b[nn * k() + kk])) { // Every non-zero actually corresponds to nr adjacent non-zeros. for (size_t i = 0; i < nr(); ++i) w[wcnt++] = xnn_float16(b[nn * k() + kk]) + static_cast(i); // Skip the very first non-zero weight as we record only the difference. if (first_nzz) { first_kk = kk; } else { const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(xnn_float16)); dmap[nnz++] = increment; } last_kk = kk; first_nzz = false; nmap[nn] += 1; } } } // now we've constructed the matrix for the blocked part and switch to the // leftovers, which we do as nr=1 always. for (size_t nn = n() / nr(); nn < ncols; nn++) { w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())]; for (size_t kk = 0; kk < k(); kk++) { if (!xnn_float16_is_zero(b[nn * k() + kk])) { // Every non-zero actually corresponds to nr adjacent non-zeros. w[wcnt++] = b[nn * k() + kk]; // Skip the very first non-zero weight as we record only the difference. if (first_nzz) { first_kk = kk; } else { const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(xnn_float16)); dmap[nnz++] = increment; } last_kk = kk; first_nzz = false; nmap[nn] += 1; } } } // In the end, we must return input pointer to the initial value. const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(xnn_float16)); dmap[nnz++] = increment; // Generate expanded b which will be used in reference calculation. // Everywhere there is input non-zero in the original we copy it and add an // adjacent non-zero with incremented weight value. xnnpack::Buffer b_full(n() * k()); if (nr() == 1) { std::copy(b.begin(), b.end(), b_full.begin()); } else { for (size_t nn = 0; nn < n() / nr(); nn++) { for (size_t kk = 0; kk < k(); kk++) { if (b[nn * k() + kk] != 0.0f) { for (size_t i = 0; i < nr(); ++i) b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast(i); } } } for (size_t nn = n() / nr(); nn < ncols; nn++) { for (size_t kk = 0; kk < k(); kk++) { if (b[nn * k() + kk] != 0.0f) { b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk]; } } } } for (size_t oc = 0; oc < n(); oc++) { for (size_t pxb = 0; pxb < m(); pxb++) { output_ref[oc * m() + pxb] = bias[oc]; for (size_t ic = 0; ic < k(); ic++) { output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic]; } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& output_value : output_ref) { output_value = std::min(std::max(output_value, output_min), output_max); } // Prepare parameters. xnn_f16_minmax_params params; init_params(¶ms, static_cast(output_min), static_cast(output_max)); spmm(m() * sizeof(xnn_float16), n(), input.data() + first_kk * m(), w.data(), dmap.data(), nmap.data(), output.data(), output_stride() * sizeof(xnn_float16), ¶ms); // Validate micro-kernel outputs. for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_NEAR( output[j * output_stride() + i], output_ref[j * m() + i], std::max(1.0e-4f, std::abs(output_ref[j * m() + i]) * 1.0e-2f)) << "at M index " << i << " / " << m() << " (tile " << mr() << ")" << ", N index " << j << " / " << n() << " (tile " << nr() << ")" << ", K = " << k(); } } } } private: size_t mr_{1}; size_t nr_{1}; size_t m_{1}; size_t n_{1}; size_t k_{1}; size_t output_stride_{0}; float sparsity_{0.5f}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{1}; };