// Copyright 2024 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::shuffle. #include // For std::array. #include #include // For size_t. #include #include // For std::multiplies. #include // For std::unique_ptr. #include // For std::accumulate. #include // For std::uniform_real_distribution. #include // For std::vector. #include #include "xnnpack.h" #include "xnnpack/math.h" #include "xnnpack/node-type.h" #include "xnnpack/operator.h" #include "xnnpack/subgraph.h" #include "replicable_random_device.h" #include "subgraph-unary-tester.h" template class StaticExpandDimsTest : public UnaryTest { protected: std::vector GetNewAxes() { size_t min_new_axes_size = this->dims.size(); size_t max_new_axes_size = XNN_MAX_TENSOR_DIMS - min_new_axes_size; auto num_new_axis_dist = std::uniform_int_distribution(std::min(min_new_axes_size, max_new_axes_size), max_new_axes_size); size_t num_new_axes = num_new_axis_dist(this->rng); auto new_axes_dist = std::uniform_int_distribution(0, this->dims.size()); new_axes.resize(num_new_axes); for (int i = 0; i < num_new_axes; ++i) { new_axes[i] = new_axes_dist(this->rng); } std::sort(new_axes.begin(), new_axes.end()); auto new_end = std::unique(new_axes.begin(), new_axes.end()); new_axes.erase(new_end, new_axes.end()); return new_axes; } void CalculateExpectedShape() { this->expected_shape = this->dims; for (size_t it : new_axes) { this->expected_shape.insert(this->expected_shape.begin() + it, 1); } } std::vector new_axes; std::vector expected_shape; }; using StaticExpandDimsTestInt8 = StaticExpandDimsTest; using StaticExpandDimsTestF16 = StaticExpandDimsTest; using StaticExpandDimsTestF32 = StaticExpandDimsTest; TEST_F(StaticExpandDimsTestInt8, define) { const int32_t zero_point = i8dist(rng); const float scale = scale_dist(rng); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); CalculateExpectedShape(); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, expected_shape.size(), expected_shape.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); new_axes = GetNewAxes(); ASSERT_EQ(xnn_status_success, xnn_define_static_expand_dims(subgraph, new_axes.size(), new_axes.data(), input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_static_expand_dims); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(StaticExpandDimsTestInt8, matches_operator_api) { const int32_t zero_point = i8dist(rng); const float scale = scale_dist(rng); std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); new_axes = GetNewAxes(); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_copy_nc_x8(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); size_t batch_size = NumElements(dims); ASSERT_EQ(xnn_status_success, xnn_reshape_copy_nc_x8(op, batch_size, 1, 1, 1, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_copy_nc_x8(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, dims.size(), dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); CalculateExpectedShape(); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, zero_point, scale, expected_shape.size(), expected_shape.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_static_expand_dims(subgraph, new_axes.size(), new_axes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); size_t num_out_dims; std::vector out_dims(XNN_MAX_TENSOR_DIMS); ASSERT_EQ(xnn_status_success, xnn_get_external_value_shape(runtime, output_id, &num_out_dims, &out_dims[0])); out_dims.resize(num_out_dims); EXPECT_EQ(expected_shape, out_dims); } TEST_F(StaticExpandDimsTestF16, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); CalculateExpectedShape(); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, expected_shape.size(), expected_shape.data(), nullptr, 1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); new_axes = GetNewAxes(); ASSERT_EQ(xnn_status_success, xnn_define_static_expand_dims(subgraph, new_axes.size(), new_axes.data(), input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_static_expand_dims); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(StaticExpandDimsTestF16, matches_operator_api) { std::generate(input.begin(), input.end(), [&]() { return xnn_float16_from_float(f32dist(rng)); }); new_axes = GetNewAxes(); ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_copy_nc_x16(/*flags=*/0, &op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); std::unique_ptr auto_op(op, xnn_delete_operator); size_t batch_size = NumElements(dims); ASSERT_EQ(xnn_status_success, xnn_reshape_copy_nc_x16(op, batch_size, 1, 1, 1, /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_setup_copy_nc_x16(op, input.data(), operator_output.data())); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); CalculateExpectedShape(); output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp16, expected_shape.size(), expected_shape.data(), nullptr, /*external_id=*/1, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ(xnn_status_success, xnn_define_static_expand_dims(subgraph, new_axes.size(), new_axes.data(), input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); size_t num_out_dims; std::vector out_dims(XNN_MAX_TENSOR_DIMS); ASSERT_EQ(xnn_status_success, xnn_get_external_value_shape(runtime, output_id, &num_out_dims, &out_dims[0])); out_dims.resize(num_out_dims); EXPECT_EQ(expected_shape, out_dims); }