#!/usr/bin/env python # Copyright 2023 Google LLC # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import codecs import os import re import sys import yaml sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) from primes import next_prime import xngen import xnncommon parser = argparse.ArgumentParser( description="Test generator for CONV HWC micro-kernels" ) parser.add_argument( "-s", "--spec", metavar="FILE", required=True, help="Spec (YAML) file" ) parser.add_argument( "-o", "--output", metavar="FILE", required=True, help="Output (C++ source) file", ) parser.set_defaults(defines=list()) TEST_TEMPLATE = """\ TEST(${TEST_NAME}, input_width_eq_${INPUT_WIDTH}) { $if ISA_CHECK: ${ISA_CHECK}; ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(${OUTPUT_CHANNELS_TILE}) .input_width(${INPUT_WIDTH}) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } $if INPUT_WIDTH > 1: TEST(${TEST_NAME}, input_width_div_${INPUT_WIDTH}) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t input_width = ${INPUT_WIDTH*2}; input_width <= ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*3}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(${OUTPUT_CHANNELS_TILE}) .input_width(input_width) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, input_width_lt_${INPUT_WIDTH}) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH}; input_width++) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(${OUTPUT_CHANNELS_TILE}) .input_width(input_width) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, input_width_gt_${INPUT_WIDTH}) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t input_width = ${INPUT_WIDTH+1}; input_width < ${INPUT_WIDTH*2}; input_width++) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(${OUTPUT_CHANNELS_TILE}) .input_width(input_width) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, output_channels_lt_${OUTPUT_CHANNELS_TILE}) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE}; output_channels++) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, output_channels_div_${OUTPUT_CHANNELS_TILE}) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_channels = ${OUTPUT_CHANNELS_TILE*2}; output_channels <= ${OUTPUT_CHANNELS_TILE*4}; output_channels += ${OUTPUT_CHANNELS_TILE}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, output_channels_gt_${OUTPUT_CHANNELS_TILE}) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_channels = ${OUTPUT_CHANNELS_TILE+1}; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels++) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(${KERNEL_SIZE}) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, input_height_lt_3) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t input_height = 1; input_height < 3; input_height++) { for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 0: .padding_right(1) .padding_height(1) // padded input height of at least 3 required $else: .padding(1) // padded input height of at least 3 required .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(input_height) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, input_height_gt_3) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t input_height = 4; input_height <= 9; input_height++) { for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(input_height) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, padding_top) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t padding_top = 0; padding_top <= 1; padding_top++) { for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .padding_top(padding_top) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(9) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, padding_bottom) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t padding_bottom = 0; padding_bottom <= 1; padding_bottom++) { for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .padding_bottom(padding_bottom) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(9) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, output_y_start) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_y_start = 1; output_y_start <= 3; output_y_start++) { for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(9) .output_y_start(output_y_start) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, output_y_end) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_y_end = 2; output_y_end < 5; output_y_end++) { for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(9) .output_y_end(output_y_end) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, qmin) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(6) .qmin(128) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, qmax) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t output_channels = 1; output_channels < ${OUTPUT_CHANNELS_TILE*2}; output_channels += ${OUTPUT_CHANNELS_TILE-1}) { for (size_t input_width = ${1 if PADDING_LEFT else 2}; input_width < ${INPUT_WIDTH*8}; input_width += ${INPUT_WIDTH*2-1}) { ConvHWCMicrokernelTester() .kernel_size(${KERNEL_SIZE}) .subsampling(${SUBSAMPLING}) $if PADDING_LEFT == 1 and PADDING_RIGHT == 1: .padding_width(${PADDING_RIGHT}) $elif PADDING_LEFT == 0 and PADDING_RIGHT == 1: .padding_right(${PADDING_RIGHT}) .input_channels(${INPUT_CHANNELS}) .output_channels_tile(${OUTPUT_CHANNELS_TILE}) .output_channels(output_channels) .input_width(input_width) .input_height(6) .qmax(128) .Test(${", ".join(TEST_ARGS)}); } } } """ def split_ukernel_name(name): match = re.fullmatch( r"xnn_f32_conv_hwc_ukernel_(\d+)x(\d+)s(\d+)(p0)?(p1)c(\d+)x(\d+)__(.+)_(\d+)x(\d+)?", name, ) assert match is not None kernel_height, kernel_width = int(match.group(1)), int(match.group(2)) assert kernel_height == kernel_width subsampling = int(match.group(3)) padding_right = 1 padding_left = 0 if match.group(4) else 1 input_channels = int(match.group(6)) channel_tile = int(match.group(7)) height_tile = int(match.group(9)) width_tile = int(match.group(10)) arch, isa, assembly = xnncommon.parse_target_name(target_name=match.group(8)) return ( kernel_height, kernel_width, subsampling, padding_left, padding_right, input_channels, channel_tile, height_tile, width_tile, arch, isa, ) def generate_test_cases( ukernel, kernel_height, kernel_width, subsampling, padding_left, padding_right, input_channels, channel_tile, height_tile, width_tile, init_fn, isa, ): """Generates all tests cases for a CONV HWC micro-kernel. Args: ukernel: C name of the micro-kernel function. kernel_height: convolution kernel height assumed by the micro-kernel. kernel_width: convolution kernel width assumed by the micro-kernel. subsampling: convolution subsampling (stride) assumed by the micro-kernel. The same subsampling factor is assumed for both horizontal and vertical directions. padding_left: input padding on the left assumed by micro-kernel, 0 or 1 padding_right: input padding on the right assumed by micro-kernel, current microkernels always assume this is 1 input_channels: number of input channels assumed by micro-kernel. channel_tile: number of output channels processed in one iteration of the main loop of the micro-kernel. height_tile: number of output rows processed in one iteration of the main loop of the micro-kernel. width_tile: number of output columns processed in one iteration of the main loop of the micro-kernel. init_fn: C name of the function to initialize microkernel parameters. isa: instruction set required to run the micro-kernel. Generated unit test will skip execution if the host processor doesn't support this ISA. Returns: Code for the test case. """ _, test_name = ukernel.split("_", 1) _, datatype, ukernel_type, _ = ukernel.split("_", 3) test_args = [ukernel, init_fn] return xngen.preprocess( TEST_TEMPLATE, { "TEST_NAME": test_name.upper().replace("UKERNEL_", ""), "TEST_ARGS": test_args, "UKERNEL_TYPE": ukernel_type.upper(), "DATATYPE": datatype, "INPUT_WIDTH": width_tile * 2, "KERNEL_SIZE": kernel_height, "KERNEL_HEIGHT": kernel_height, "KERNEL_WIDTH": kernel_width, "SUBSAMPLING": subsampling, "PADDING_LEFT": padding_left, "PADDING_RIGHT": padding_right, "INPUT_CHANNELS": input_channels, "OUTPUT_CHANNELS_TILE": channel_tile, "HEIGHT_TILE": height_tile, "WIDTH_TILE": width_tile, "ISA_CHECK": xnncommon.generate_isa_check_macro(isa), "next_prime": next_prime, }, ) def main(args): options = parser.parse_args(args) with codecs.open(options.spec, "r", encoding="utf-8") as spec_file: spec_yaml = yaml.safe_load(spec_file) if not isinstance(spec_yaml, list): raise ValueError("expected a list of micro-kernels in the spec") tests = """\ // Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. // // Auto-generated file. Do not edit! // Specification: {specification} // Generator: {generator} #include #include "xnnpack/common.h" #include "xnnpack/conv.h" #include "xnnpack/isa-checks.h" #include "xnnpack/microparams-init.h" #include "conv-hwc-microkernel-tester.h" """.format(specification=options.spec, generator=sys.argv[0]) for ukernel_spec in spec_yaml: name = ukernel_spec["name"] init_fn = ukernel_spec["init"] ( kernel_height, kernel_width, subsampling, padding_left, padding_right, input_channels, channel_tile, height_tile, width_tile, arch, isa, ) = split_ukernel_name(name) test_case = generate_test_cases( name, kernel_height, kernel_width, subsampling, padding_left, padding_right, input_channels, channel_tile, height_tile, width_tile, init_fn, isa, ) tests += "\n\n" + xnncommon.postprocess_test_case(test_case, arch, isa) xnncommon.overwrite_if_changed(options.output, tests) if __name__ == "__main__": main(sys.argv[1:])