# PyTorch CI Stats We track various stats about each CI job. 1. Jobs upload their artifacts to an intermediate data store (either GitHub Actions artifacts or S3, depending on what permissions the job has). Example: https://github.com/pytorch/pytorch/blob/a9f6a35a33308f3be2413cc5c866baec5cfe3ba1/.github/workflows/_linux-build.yml#L144-L151 2. When a workflow completes, a `workflow_run` event [triggers `upload-test-stats.yml`](https://github.com/pytorch/pytorch/blob/d9fca126fca7d7780ae44170d30bda901f4fe35e/.github/workflows/upload-test-stats.yml#L4). 3. `upload-test-stats` downloads the raw stats from the intermediate data store and uploads them as JSON to s3, which then uploads to our database backend ```mermaid graph LR J1[Job with AWS creds
e.g. linux, win] --raw stats--> S3[(AWS S3)] J2[Job w/o AWS creds
e.g. mac] --raw stats--> GHA[(GH artifacts)] S3 --> uts[upload-test-stats.yml] GHA --> uts uts --json--> s3[(s3)] s3 --> DB[(database)] ``` Why this weird indirection? Because writing to the database requires special permissions which, for security reasons, we do not want to give to pull request CI. Instead, we implemented GitHub's [recommended pattern](https://securitylab.github.com/research/github-actions-preventing-pwn-requests/) for cases like this. For more details about what stats we export, check out [`upload-test-stats.yml`](https://github.com/pytorch/pytorch/blob/d9fca126fca7d7780ae44170d30bda901f4fe35e/.github/workflows/upload-test-stats.yml)