# FlashInfer Fused AllReduce + RMSNorm Benchmark This benchmark script is modified from the [original implementation](https://github.com/vllm-project/vllm/blob/237e1fb887c7f5a579420fa0295097f24b006594/benchmarks/kernels/benchmark_fused_collective.py) by the vLLM community. It aims to compare the performance differences between FlashInfer fused operators in SGLang (trtllm_allreduce_fusion: AllReduce + Residual Add + RMSNorm + optional quantization) and conventional implementations (standard `tensor_model_parallel_all_reduce` + separate RMSNorm/quantization). Specifically, this script tests the timing performance of two implementation paths: 1) Standard AllReduce and RMSNorm executed separately; 2) FlashInfer's fused operator combining AllReduce, Residual Add, RMSNorm, and optional quantization operations. This benchmark script helps us tune the ipc workspace size of the `flashinfer_allreduce_residual_rmsnorm` operator in SGLang and prepare for applications with FP8/FP4 quantized fused operators. Script path: `benchmark/kernels/flashinfer_allreduce_fusion/benchmark_fused_collective.py` ## Feature Overview - Compare average execution time (ms) and calculate speedup ratios for the following paths: - standard_allreduce_rmsnorm (Standard AllReduce + RMSNorm) - flashinfer_fused_allreduce_rmsnorm (Fused AllReduce + RMSNorm), including oneshot and twoshot modes - Optionally compare FP8/FP4 quantized fused paths with standard paths - Use CUDA Graph capture and batch replay to reduce measurement noise - Automatically select the faster "standard baseline" (native/compiled version) as the denominator for speedup calculation - Optionally export results in Markdown format ## Runtime Environment and Prerequisites - At least 2 GPUs, and launch multi-process distributed training using `torchrun` (NCCL backend) - Properly install/compile sglang along with sgl-kernel and custom operators ## Quick Start (Command Examples) The following examples use world_size=2. You can modify `--nproc_per_node` and parameters according to your machine: - Regular paths only (no quantization): ``` torchrun --nproc_per_node=2 \ benchmark/kernels/flashinfer_allreduce_fusion/benchmark_fused_collective.py \ --no-quant --hidden-dim 1024 --seq-lens 512 1024 2048 4096 --trials 100 ``` - FP8 quantization paths only: ``` torchrun --nproc_per_node=2 \ benchmark/kernels/flashinfer_allreduce_fusion/benchmark_fused_collective.py \ --quant-fp8 --hidden-dim 1024 --seq-lens 512 1024 2048 4096 --trials 100 ``` - FP4 quantization paths only: ``` torchrun --nproc_per_node=2 \ benchmark/kernels/flashinfer_allreduce_fusion/benchmark_fused_collective.py \ --quant-fp4 --hidden-dim 1024 --seq-lens 512 1024 2048 4096 --trials 100 ``` - Larger hidden dimensions: ``` torchrun --nproc_per_node=2 \ benchmark/kernels/flashinfer_allreduce_fusion/benchmark_fused_collective.py \ --no-quant --hidden-dim 4096 --seq-lens 512 1024 2048 4096 --trials 100 ``` ## Parameter Description - `--seq-lens`: List of sequence lengths to test (default: 128 512 1024 2048) - `--hidden-dim`: Hidden dimension (default: 8192) - `--dtypes`: Data type list, `float16|bfloat16|float32` (default: bfloat16) - `--no-residual`: Only test "no residual" scenarios (default tests both "with/without residual") - Mutually exclusive quantization options: - `--no-quant`: No quantization testing - `--quant-fp8`: Only FP8 quantization testing - `--quant-fp4`: Only FP4 quantization testing - `--quant-all`: Test all (default) - FlashInfer related: - `--disable-oneshot`: Disable oneshot mode (default enables oneshot and tests twoshot simultaneously) - Runtime configuration: - `--warmup`: Warmup count before graph capture and before graph replay (default 5) - `--trials`: Benchmark iteration count (default 20; internally each `graph.replay()` will batch replay multiple times) - `--output-file`: Save results as Markdown file (only rank0 takes effect) ## Output Example Each configuration group prints a table showing average execution time and relative speedup ratios (baseline is the faster standard implementation). For example: ``` ================================================================================ Results: seq_len=1024, hidden_dim=1024 dtype=torch.bfloat16, residual=yes, quant_mode=none ================================================================================ Operation Time (ms) Speedup -------------------------------------------------------------------------------- standard_allreduce_rmsnorm 0.024 0.98x standard_allreduce_rmsnorm_native_compiled 0.023 baseline flashinfer_fused_allreduce_rmsnorm_oneshot 0.011 2.19x flashinfer_fused_allreduce_rmsnorm_twoshot 0.041 0.57x ``` If `--output-file` is specified, all configurations will be summarized in Markdown tables in that file. ## Important Notes and Recommendations - Distributed: The script uses `torchrun` environment variables to initialize distributed training and binds tensors/communication groups to the current rank's corresponding device. - World size: Requires `WORLD_SIZE > 1` to perform communication operator benchmarks. Otherwise, the script will error and prompt. - FlashInfer: - If not installed or interfaces are missing, the script will only run standard paths and provide prompts in the logs. - The fused operator internally uses "oneshot"/"twoshot" two trigger methods; oneshot is enabled by default and twoshot is tested simultaneously. - FP8/FP4: - FP8 uses sglang's FP8 tools and dtype, with underlying platform selection of `e4m3`/`e4m3fnuz` etc. - FP4 uses sgl-kernel's `scaled_fp4_quant`, requiring corresponding platform support. - CUDA Graph: - Uses sglang's `graph_capture()` to prepare capture-ready state for communication, then uses `torch.cuda.graph` to capture kernels, reducing measurement jitter.