## Run evaluation ### Evaluate sglang Host the VLM: ``` python -m sglang.launch_server --model-path Qwen/Qwen2-VL-7B-Instruct --port 30000 ``` It's recommended to reduce the memory usage by appending something like `--mem-fraction-static 0.6` to the command above. Benchmark: ``` python benchmark/mmmu/bench_sglang.py --port 30000 --concurrency 16 ``` You can adjust the `--concurrency` to control the number of concurrent OpenAI calls. You can use `--lora-path` to specify the LoRA adapter to apply during benchmarking. E.g., ``` # Launch server with LoRA enabled python -m sglang.launch_server --model-path microsoft/Phi-4-multimodal-instruct --port 30000 --trust-remote-code --disable-radix-cache --lora-paths vision= # Apply LoRA adapter during inferencing python -m benchmark/mmmu/bench_sglang.py --concurrency 8 --lora-path vision ``` You can use `--response-answer-regex` to specify how to extract the answer from the response string. E.g., ``` python3 -m sglang.launch_server --model-path zai-org/GLM-4.1V-9B-Thinking --reasoning-parser glm45 python3 bench_sglang.py --response-answer-regex "<\|begin_of_box\|>(.*)<\|end_of_box\|>" --concurrency 64 ``` You can use `--extra-request-body` to specify additional OpenAI request parameters. E.g., ``` python3 bench_sglang.py --extra-request-body '{"max_new_tokens": 128, "temperature": 0.01}' ``` ### Evaluate hf ``` python benchmark/mmmu/bench_hf.py --model-path Qwen/Qwen2-VL-7B-Instruct ```