/* * Copyright (c) 2024 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #ifndef USE_ROCM #include #include "utils.h" #else #include "hip/hip_act_and_mul.cuh" #endif // Adapted from flashinfer activation // https://github.com/flashinfer-ai/flashinfer/blob/4e8eb1879f9c3ba6d75511e5893183bf8f289a62/csrc/activation.cu#L44 namespace detail { template __device__ __forceinline__ float to_f32(const T& x) { #if USE_ROCM return castToFloat(x); #else return static_cast(x); #endif } template __device__ __forceinline__ T from_f32(float f32) { #if USE_ROCM return castFromFloat(f32); #else return static_cast(f32); #endif } } // namespace detail template __device__ __forceinline__ T silu(const T& x) { float f32_val = detail::to_f32(x); return detail::from_f32(f32_val / (1.0f + expf(-f32_val))); } template __device__ __forceinline__ T gelu(const T& x) { constexpr float kAlpha = M_SQRT1_2; float f32_val = detail::to_f32(x); return detail::from_f32(f32_val * (0.5f * (1.0f + erf(f32_val * kAlpha)))); } // gelu_quick(x) = x * torch.sigmoid(1.702 * x) template __device__ __forceinline__ T gelu_quick_act(const T& x) { float f32_val = detail::to_f32(x); return detail::from_f32(f32_val / (1.0f + expf(-f32_val * 1.702f))); } template __device__ __forceinline__ T gelu_tanh(const T& x) { constexpr float kAlpha = 0.044715f; constexpr float kBeta = 0.7978845608028654f; float f32_val = detail::to_f32(x); const float cdf = 0.5f * (1.0f + tanhf((kBeta * (f32_val + kAlpha * f32_val * f32_val * f32_val)))); return detail::from_f32(f32_val * cdf); } void silu_and_mul(at::Tensor& out, at::Tensor& input) { int d = input.size(-1) / 2; int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); #if USE_ROCM sgl_hip::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); #else flashinfer::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); #endif return true; }); } void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input) { int d = input.size(-1) / 2; int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); #if USE_ROCM sgl_hip::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); #else flashinfer::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); #endif return true; }); } void gelu_and_mul(at::Tensor& out, at::Tensor& input) { int d = input.size(-1) / 2; int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); #if USE_ROCM sgl_hip::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); #else flashinfer::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); #endif return true; }); } #if USE_ROCM void gelu_quick(at::Tensor& out, const at::Tensor& input) { int d = input.size(-1); int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); sgl_hip::activation::act_only_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); return true; }); } #endif