# Adapted from https://github.com/vllm-project/vllm/blob/main/tests/kernels/mamba/test_causal_conv1d.py from typing import Optional import torch from sgl_kernel import causal_conv1d_fwd from sgl_kernel import causal_conv1d_update as causal_conv1d_update_kernel PAD_SLOT_ID = -1 def causal_conv1d_fn( x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, query_start_loc: Optional[torch.Tensor] = None, cache_indices: Optional[torch.Tensor] = None, has_initial_state: Optional[torch.Tensor] = None, conv_states: Optional[torch.Tensor] = None, activation: Optional[str] = "silu", pad_slot_id: int = PAD_SLOT_ID, ): """ x: (batch, dim, seqlen) or (dim,cu_seq_len) for varlen sequences are concatenated from left to right for varlen weight: (dim, width) bias: (dim,) query_start_loc: (batch + 1) int32 The cumulative sequence lengths of the sequences in the batch, used to index into sequence. prepended by 0. for example: query_start_loc = torch.Tensor([0,10,16,17]), x.shape=(dim,17) cache_indices: (batch) int32 indicates the corresponding state index, like so: conv_state = conv_states[cache_indices[batch_id]] has_initial_state: (batch) bool indicates whether should the kernel take the current state as initial state for the calculations conv_states: (...,dim,width - 1) itype updated inplace if provided activation: either None or "silu" or "swish" pad_slot_id: int if cache_indices is passed, lets the kernel identify padded entries that will not be processed, for example: cache_indices = [pad_slot_id, 1, 20, pad_slot_id] in this case, the kernel will not process entries at indices 0 and 3 out: (batch, dim, seqlen) """ if activation not in [None, "silu", "swish"]: raise NotImplementedError("activation must be None, silu, or swish") if x.stride(-1) != 1: x = x.contiguous() bias = bias.contiguous() if bias is not None else None causal_conv1d_fwd( x, weight, bias, conv_states, query_start_loc, cache_indices, has_initial_state, activation in ["silu", "swish"], pad_slot_id, ) return x def causal_conv1d_update( x: torch.Tensor, conv_state: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, activation: Optional[str] = None, cache_seqlens: Optional[torch.Tensor] = None, conv_state_indices: Optional[torch.Tensor] = None, pad_slot_id: int = PAD_SLOT_ID, ): """ x: (batch, dim) or (batch, dim, seqlen) conv_state: (batch, dim, state_len), where state_len >= width - 1 weight: (dim, width) bias: (dim,) cache_seqlens: (batch,), dtype int32. If not None, the conv_state is treated as a circular buffer. The conv_state will be updated by copying x to the conv_state starting at the index @cache_seqlens % state_len. conv_state_indices: (batch,), dtype int32 If not None, the conv_state is a larger tensor along the batch dim, and we are selecting the batch coords specified by conv_state_indices. Useful for a continuous batching scenario. pad_slot_id: int if cache_indices is passed, lets the kernel identify padded entries that will not be processed, for example: cache_indices = [pad_slot_id, 1 ,20 ,pad_slot_id] in this case, the kernel will not process entries at indices 0 and 3 out: (batch, dim) or (batch, dim, seqlen) """ if activation not in [None, "silu", "swish"]: raise NotImplementedError( f"activation must be None, silu, or swish, actual: {activation}" ) activation_val = activation in ["silu", "swish"] unsqueeze = x.dim() == 2 if unsqueeze: x = x.unsqueeze(-1) causal_conv1d_update_kernel( x, conv_state, weight, bias, activation_val, cache_seqlens, conv_state_indices, pad_slot_id, ) if unsqueeze: x = x.squeeze(-1) return x # SPDX-License-Identifier: Apache-2.0 from typing import Optional import pytest import torch import torch.nn.functional as F def causal_conv1d_ref( x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, initial_states: Optional[torch.Tensor] = None, return_final_states: bool = False, final_states_out: Optional[torch.Tensor] = None, activation: Optional[str] = "silu", ): """ x: (batch, dim, seqlen) weight: (dim, width) bias: (dim,) initial_states: (batch, dim, width - 1) final_states_out: (batch, dim, width - 1) out: (batch, dim, seqlen) """ if activation not in [None, "silu", "swish"]: raise NotImplementedError("activation must be None, silu, or swish") dtype_in = x.dtype x = x.to(weight.dtype) seqlen = x.shape[-1] dim, width = weight.shape if initial_states is None: out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim) else: x = torch.cat([initial_states, x], dim=-1) out = F.conv1d(x, weight.unsqueeze(1), bias, padding=0, groups=dim) out = out[..., :seqlen] if return_final_states: final_states = F.pad(x, (width - 1 - x.shape[-1], 0)).to( dtype_in ) # (batch, dim, width - 1) if final_states_out is not None: final_states_out.copy_(final_states) else: final_states_out = final_states out = (out if activation is None else F.silu(out)).to(dtype=dtype_in) return (out, None) if not return_final_states else (out, final_states_out) def causal_conv1d_update_ref( x, conv_state, weight, bias=None, activation=None, cache_seqlens=None ): """ x: (batch, dim) or (batch, dim, seqlen) conv_state: (batch, dim, state_len), where state_len >= width - 1 weight: (dim, width) bias: (dim,) cache_seqlens: (batch,), dtype int32. If not None, the conv_state is treated as a circular buffer. The conv_state will be updated by copying x to the conv_state starting at the index @cache_seqlens % state_len before performing the convolution. out: (batch, dim) or (batch, dim, seqlen) """ if activation not in [None, "silu", "swish"]: raise NotImplementedError("activation must be None, silu, or swish") dtype_in = x.dtype unsqueeze = x.dim() == 2 if unsqueeze: x = x.unsqueeze(-1) batch, dim, seqlen = x.shape width = weight.shape[1] state_len = conv_state.shape[-1] assert conv_state.shape == (batch, dim, state_len) assert weight.shape == (dim, width) if cache_seqlens is None: x_new = torch.cat([conv_state, x], dim=-1).to( weight.dtype ) # (batch, dim, state_len + seqlen) conv_state.copy_(x_new[:, :, -state_len:]) else: width_idx = torch.arange( -(width - 1), 0, dtype=torch.long, device=x.device ).unsqueeze(0) + cache_seqlens.unsqueeze(1) width_idx = ( torch.remainder(width_idx, state_len).unsqueeze(1).expand(-1, dim, -1) ) x_new = torch.cat([conv_state.gather(2, width_idx), x], dim=-1).to(weight.dtype) copy_idx = torch.arange(seqlen, dtype=torch.long, device=x.device).unsqueeze( 0 ) + cache_seqlens.unsqueeze(1) copy_idx = torch.remainder(copy_idx, state_len).unsqueeze(1).expand(-1, dim, -1) conv_state.scatter_(2, copy_idx, x) out = F.conv1d(x_new, weight.unsqueeze(1), bias, padding=0, groups=dim)[ :, :, -seqlen: ] if unsqueeze: out = out.squeeze(-1) return (out if activation is None else F.silu(out)).to(dtype=dtype_in) @pytest.mark.parametrize("itype", [torch.bfloat16, torch.float]) @pytest.mark.parametrize("silu_activation", [True]) @pytest.mark.parametrize("has_bias", [True]) @pytest.mark.parametrize("has_initial_state", [True, False]) @pytest.mark.parametrize("width", [4]) @pytest.mark.parametrize( "seqlen", [1, 8, 16, 32, 64, 128, 256, 512, 784, 1024, 1025, 2048, 4096] ) @pytest.mark.parametrize("dim", [64]) @pytest.mark.parametrize("batch", [1]) def test_causal_conv1d( batch, dim, seqlen, width, has_bias, silu_activation, has_initial_state, itype ): device = "cuda" rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: rtol, atol = 1e-2, 5e-2 x = torch.randn(batch, dim, seqlen, device=device, dtype=itype).contiguous() weight = torch.randn(dim, width, device=device, dtype=itype) bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None if has_initial_state: initial_states = torch.randn(batch, dim, width - 1, device=device, dtype=itype) has_initial_state_tensor = torch.ones(batch, dtype=torch.bool, device=x.device) else: initial_states = None has_initial_state_tensor = None x_ref = x.clone() weight_ref = weight.clone() bias_ref = bias.clone() if bias is not None else None initial_states_ref = initial_states.clone() if initial_states is not None else None activation = None if not silu_activation else "silu" out = causal_conv1d_fn( x, weight, bias, activation=activation, conv_states=initial_states, has_initial_state=has_initial_state_tensor, ) out_ref, final_states_ref = causal_conv1d_ref( x_ref, weight_ref, bias_ref, initial_states=initial_states_ref, return_final_states=True, activation=activation, ) if has_initial_state: assert initial_states is not None and final_states_ref is not None assert torch.allclose(initial_states, final_states_ref, rtol=rtol, atol=atol) assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize("itype", [torch.bfloat16]) @pytest.mark.parametrize("silu_activation", [False, True]) @pytest.mark.parametrize("has_bias", [False, True]) @pytest.mark.parametrize("seqlen", [1]) @pytest.mark.parametrize("width", [4]) @pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096]) def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation, itype): device = "cuda" rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: rtol, atol = 1e-2, 5e-2 batch = 2 x = torch.randn(batch, dim, seqlen, device=device, dtype=itype) x_ref = x.clone() conv_state = torch.randn(batch, dim, width - 1, device=device, dtype=itype) weight = torch.randn(dim, width, device=device, dtype=itype) bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None conv_state_ref = conv_state.detach().clone() activation = None if not silu_activation else "silu" out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation) out_ref = causal_conv1d_update_ref( x_ref, conv_state_ref, weight, bias, activation=activation ) assert torch.equal(conv_state, conv_state_ref) assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16]) @pytest.mark.parametrize("silu_activation", [False, True]) @pytest.mark.parametrize("has_bias", [False, True]) @pytest.mark.parametrize("seqlen", [1, 4, 5]) @pytest.mark.parametrize("width", [2, 3, 4]) @pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096]) # tests correctness in case subset of the sequences are padded @pytest.mark.parametrize("with_padding", [True, False]) def test_causal_conv1d_update_with_batch_gather( with_padding, dim, width, seqlen, has_bias, silu_activation, itype ): device = "cuda" rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: rtol, atol = 1e-2, 5e-2 batch_size = 3 padding = 5 if with_padding else 0 padded_batch_size = batch_size + padding total_entries = 10 * batch_size x = torch.randn(padded_batch_size, dim, 1, device=device, dtype=itype) x_ref = x.clone() conv_state_indices = torch.randperm(total_entries)[:batch_size].to( dtype=torch.int32, device=device ) unused_states_bool = torch.ones(total_entries, dtype=torch.bool, device=device) unused_states_bool[conv_state_indices] = False padded_state_indices = torch.concat( [ conv_state_indices, torch.as_tensor([PAD_SLOT_ID] * padding, dtype=torch.int32, device=device), ], dim=0, ) conv_state = torch.randn(total_entries, dim, width - 1, device=device, dtype=itype) conv_state_for_padding_test = conv_state.clone() weight = torch.randn(dim, width, device=device, dtype=itype) bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None conv_state_ref = conv_state[conv_state_indices, :].detach().clone() activation = None if not silu_activation else "silu" out = causal_conv1d_update( x, conv_state, weight, bias, activation=activation, conv_state_indices=padded_state_indices, pad_slot_id=PAD_SLOT_ID, ) out_ref = causal_conv1d_update_ref( x_ref[:batch_size], conv_state_ref, weight, bias, activation=activation ) assert torch.equal(conv_state[conv_state_indices, :], conv_state_ref) assert torch.allclose(out[:batch_size], out_ref, rtol=rtol, atol=atol) assert torch.equal( conv_state[unused_states_bool], conv_state_for_padding_test[unused_states_bool] ) @pytest.mark.parametrize("itype", [torch.bfloat16]) @pytest.mark.parametrize("silu_activation", [True]) @pytest.mark.parametrize("has_bias", [True]) @pytest.mark.parametrize("width", [4]) @pytest.mark.parametrize( "seqlen", [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 2049, 4096] ) @pytest.mark.parametrize("dim", [64, 4096]) # tests correctness in case subset of the sequences are padded @pytest.mark.parametrize("with_padding", [True, False]) def test_causal_conv1d_varlen( with_padding, dim, seqlen, width, has_bias, silu_activation, itype ): device = "cuda" torch.cuda.empty_cache() rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: rtol, atol = 1e-2, 5e-2 seqlens = [] batch_size = 4 if seqlen < 10: batch_size = 1 padding = 3 if with_padding else 0 padded_batch_size = batch_size + padding nsplits = padded_batch_size - 1 eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values seqlens.append( torch.diff( torch.cat([torch.tensor([-1]), eos_pos, torch.tensor([seqlen - 1])]) ).tolist() ) assert sum(seqlens[-1]) == seqlen assert all(s > 0 for s in seqlens[-1]) total_entries = batch_size * 10 cumsum = torch.cumsum(torch.tensor(seqlens[0]), dim=0).to(torch.int32) cumsum = torch.concat([torch.tensor([0], dtype=torch.int32), cumsum], dim=0) x = torch.randn(1, 4096 + dim + 64, seqlen, device=device, dtype=itype)[ :, 4096 : 4096 + dim, : ] weight = torch.randn(dim, width, device=device, dtype=itype) bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None x_ref = x.clone() weight_ref = weight.clone() bias_ref = bias.clone() if bias is not None else None activation = None if not silu_activation else "silu" final_states = torch.randn( total_entries, dim, width - 1, device=x.device, dtype=x.dtype ) final_states_ref = final_states.clone() has_initial_states = torch.randint( 0, 2, (cumsum.shape[0] - 1,), dtype=torch.bool, device=x.device ) state_indices = torch.randperm(total_entries, dtype=torch.int32, device=x.device)[ :batch_size ] padded_state_indices = torch.concat( [ state_indices, torch.as_tensor([PAD_SLOT_ID] * padding, dtype=torch.int32, device=device), ], dim=-1, ) out = causal_conv1d_fn( x.squeeze(0), weight, bias, cumsum.cuda(), padded_state_indices, has_initial_states, final_states, activation, PAD_SLOT_ID, ) out_ref = [] out_ref_b = [] splits = [torch.split(var, seqlens[0], dim=-1) for var in (x_ref)] for i in range(len(seqlens[0])): x_s = [v[i].unsqueeze(0) for v in splits][0] if padded_state_indices[i] == PAD_SLOT_ID: continue out_ref_b.append( causal_conv1d_ref( x_s, weight_ref, bias_ref, activation=activation, return_final_states=True, final_states_out=final_states_ref[padded_state_indices[i]].unsqueeze(0), initial_states=( final_states_ref[padded_state_indices[i]].unsqueeze(0) if has_initial_states[i] else None ), ) ) out_ref.append(torch.cat([t[0] for t in out_ref_b], dim=2)) out_ref_tensor = torch.cat(out_ref, dim=0) unpadded_out = out[:, : out_ref_tensor.shape[-1]] assert torch.allclose(unpadded_out, out_ref_tensor, rtol=rtol, atol=atol) assert torch.allclose( final_states[state_indices], final_states_ref[state_indices], rtol=rtol, atol=atol, ) if __name__ == "__main__": pytest.main([__file__])