import itertools import unittest from typing import Optional import torch import torch.testing from sglang.srt.layers.quantization.fp8_kernel import triton_scaled_mm from sglang.test.test_utils import CustomTestCase def torch_scaled_mm( a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, scale_b: torch.Tensor, out_dtype: torch.dtype, bias: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Reference implementation using float32 for stability""" out = torch.mm(a.to(torch.float32), b.to(torch.float32)) out = scale_a.to(torch.float32) * out * scale_b.to(torch.float32).T if bias is not None: out = out + bias.to(torch.float32) return out.to(out_dtype) class TestScaledMM(CustomTestCase): @classmethod def setUpClass(cls): if not torch.cuda.is_available(): raise unittest.SkipTest("This test requires a CUDA device.") torch.set_default_device("cuda") def _make_inputs(self, M, K, N, in_dtype): if in_dtype == torch.int8: a = torch.randint(-8, 8, (M, K), dtype=in_dtype, device="cuda") b = torch.randint(-8, 8, (K, N), dtype=in_dtype, device="cuda") else: # fp8 a = torch.clamp( 0.1 * torch.randn((M, K), dtype=torch.float16, device="cuda"), -0.3, 0.3 ).to(in_dtype) b = torch.clamp( 0.1 * torch.randn((K, N), dtype=torch.float16, device="cuda"), -0.3, 0.3 ).to(in_dtype) return a, b def test_basic_cases(self): """Test core functionality with reduced precision requirements""" test_configs = [ (32, 32, 32, torch.int8, torch.float16, False), (64, 64, 64, torch.int8, torch.float16, True), ] try: torch.tensor([1.0], dtype=torch.float8_e4m3fn, device="cuda") test_configs.append((32, 32, 32, torch.float8_e4m3fn, torch.float16, False)) except: print("FP8 not supported, skipping") for M, K, N, in_dtype, out_dtype, with_bias in test_configs: with self.subTest(M=M, K=K, N=N, dtype=in_dtype, bias=with_bias): print(f"Currently testing with in_dtype: {in_dtype}") torch.manual_seed(42) input, weight = self._make_inputs(M, K, N, in_dtype) scale_a = 0.1 + 0.05 * torch.rand( (M, 1), dtype=torch.float32, device="cuda" ) scale_b = 0.1 + 0.05 * torch.rand( (N, 1), dtype=torch.float32, device="cuda" ) bias = ( 0.01 * torch.randn((M, N), dtype=out_dtype, device="cuda") if with_bias else None ) triton_out = triton_scaled_mm( input, weight, scale_a, scale_b, out_dtype, bias ) ref_out = torch_scaled_mm( input, weight, scale_a, scale_b, out_dtype, bias ) # Use relaxed tolerances rtol = 0.15 if in_dtype == torch.int8 else 0.25 atol = 0.1 if in_dtype == torch.int8 else 0.15 torch.testing.assert_close(triton_out, ref_out, rtol=rtol, atol=atol) if __name__ == "__main__": unittest.main(verbosity=2)