import unittest import torch from sglang.srt.layers.rotary_embedding import RotaryEmbedding from sglang.srt.utils import get_bool_env_var, is_hip from sglang.test.test_utils import CustomTestCase torch.manual_seed(0) _is_hip = is_hip() _use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip _CASES = [ (64, 64, 32, 8000, True, torch.bfloat16, "cuda", 32, 32, 1, 1), (256, 128, 4096, 10000, True, torch.bfloat16, "cuda", 2, 512, 4, 2), (512, 128, 311, 10000, True, torch.bfloat16, "cuda", 3, 39, 4, 2), (128, 128, 2048, 10000, False, torch.bfloat16, "cuda", 2, 512, 32, 8), (128, 128, 2048, 10000, False, torch.bfloat16, "cuda", 2, 512, 16, 4), (512, 128, 311, 10000, False, torch.bfloat16, "cuda", 3, 39, 4, 2), ] @unittest.skipIf(_use_aiter, reason="SGLANG_USE_AITER=1 will not use vllm path.") class TestRotaryEmbeddingNative(CustomTestCase): # Compare RotaryEmbedding.forward_hip() to forward_native(). def _run_case( self, head_size: int, rotary_dim: int, max_pos: int, base: int, is_neox: bool, dtype: torch.dtype, device: str, batch_size: int, seq_len: int, num_q: int, num_kv: int, ) -> None: rope_ref = RotaryEmbedding( head_size, rotary_dim, max_pos, base, is_neox, dtype ).to(device) rope_hip = RotaryEmbedding( head_size, rotary_dim, max_pos, base, is_neox, dtype ).to(device) pos_ids = torch.arange(seq_len, device=device).repeat(batch_size) query = torch.randn( batch_size * seq_len, num_q * head_size, dtype=dtype, device=device ) key = torch.randn( batch_size * seq_len, num_kv * head_size, dtype=dtype, device=device ) q_ref, k_ref = rope_ref.forward_native(pos_ids, query.clone(), key.clone()) q_hip, k_hip = rope_hip.forward_hip(pos_ids, query.clone(), key.clone()) torch.testing.assert_close(q_ref, q_hip, atol=1e-2, rtol=1e-2) torch.testing.assert_close(k_ref, k_hip, atol=1e-2, rtol=1e-2) def test_all_cases(self) -> None: """Drive over the full parameter matrix using subTest().""" for case in _CASES: with self.subTest(case=case): self._run_case(*case) @unittest.skipIf(not _use_aiter, reason="Requires AMD GPU plus SGLANG_USE_AITER=1") class TestRotaryEmbeddingAITer(CustomTestCase): @staticmethod def _run_case_aiter( head_size: int, rotary_dim: int, max_pos: int, base: int, is_neox: bool, dtype: torch.dtype, device: str, batch_size: int, seq_len: int, num_q: int, num_kv: int, ) -> None: from aiter.rotary_embedding import RotaryEmbedding as AiterRotaryEmbedding rope_ref = AiterRotaryEmbedding( head_size, rotary_dim, max_pos, base, is_neox, dtype ).to(device) rope_hip = AiterRotaryEmbedding( head_size, rotary_dim, max_pos, base, is_neox, dtype ).to(device) pos_ids = torch.arange(seq_len, device=device).repeat(batch_size) query = torch.randn( batch_size * seq_len, num_q * head_size, dtype=dtype, device=device ) key = torch.randn( batch_size * seq_len, num_kv * head_size, dtype=dtype, device=device ) q_ref, k_ref = rope_ref.forward_native(pos_ids, query.clone(), key.clone()) q_hip, k_hip = rope_hip.forward_hip(pos_ids, query.clone(), key.clone()) torch.testing.assert_close(q_ref, q_hip, atol=1e-2, rtol=1e-2) torch.testing.assert_close(k_ref, k_hip, atol=1e-2, rtol=1e-2) def test_all_cases(self) -> None: for case in _CASES: with self.subTest(case=case): self._run_case_aiter(*case) if __name__ == "__main__": unittest.main()