# Qwen3-Next Usage SGLang has supported Qwen3-Next-80B-A3B-Instruct and Qwen3-Next-80B-A3B-Thinking since [this PR](https://github.com/sgl-project/sglang/pull/10233). ## Launch Qwen3-Next with SGLang To serve Qwen3-Next models on 4xH100/H200 GPUs: ```bash python3 -m sglang.launch_server --model Qwen/Qwen3-Next-80B-A3B-Instruct --tp 4 ``` ### Configuration Tips - `--max-mamba-cache-size`: Adjust `--max-mamba-cache-size` to increase mamba cache space and max running requests capability. It will decrease KV cache space as a trade-off. You can adjust it according to workload. - `--mamba-ssm-dtype`: `bfloat16` or `float32`, use `bfloat16` to save mamba cache size and `float32` to get more accurate results. The default setting is `float32`. ### EAGLE Speculative Decoding **Description**: SGLang has supported Qwen3-Next models with [EAGLE speculative decoding](https://docs.sglang.ai/advanced_features/speculative_decoding.html#EAGLE-Decoding). **Usage**: Add arguments `--speculative-algorithm`, `--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` to enable this feature. For example: ``` bash python3 -m sglang.launch_server --model Qwen/Qwen3-Next-80B-A3B-Instruct --tp 4 --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4 --speculative-algo NEXTN ``` Details can be seen in [this PR](https://github.com/sgl-project/sglang/pull/10233).