209 lines
6.1 KiB
Python
209 lines
6.1 KiB
Python
"""
|
|
Benchmark RoPE for flashinfer and vLLM. vLLM installation is required to run this benchmark.
|
|
|
|
Usage:
|
|
$ pip install vllm
|
|
$ python bench_rope.py
|
|
"""
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import triton
|
|
from vllm.model_executor.layers.rotary_embedding import (
|
|
RotaryEmbedding as vLLMRotaryEmbedding,
|
|
)
|
|
|
|
from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
|
|
from flashinfer.testing.utils import bench_gpu_time
|
|
|
|
|
|
class FlashInferRotaryEmbedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
head_size: int,
|
|
rotary_dim: int,
|
|
max_position_embeddings: int,
|
|
base: int,
|
|
is_neox_style: bool,
|
|
dtype: torch.dtype,
|
|
) -> None:
|
|
super().__init__()
|
|
self.head_size = head_size
|
|
self.rotary_dim = rotary_dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.is_neox_style = is_neox_style
|
|
self.dtype = dtype
|
|
|
|
cache = self._compute_cos_sin_cache()
|
|
self.cos_sin_cache: torch.Tensor
|
|
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
|
|
|
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
|
inv_freq = 1.0 / (
|
|
base
|
|
** (
|
|
torch.arange(0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim
|
|
)
|
|
)
|
|
return inv_freq
|
|
|
|
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
"""Compute the cos and sin cache."""
|
|
inv_freq = self._compute_inv_freq(self.base)
|
|
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
|
|
|
|
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cache = torch.cat((cos, sin), dim=-1)
|
|
return cache
|
|
|
|
def _apply_rotary_emb(
|
|
self,
|
|
x: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
is_neox_style: bool,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x: [num_tokens, num_heads, head_size]
|
|
cos: [num_tokens, head_size // 2]
|
|
sin: [num_tokens, head_size // 2]
|
|
is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
|
|
positional embeddings.
|
|
"""
|
|
cos = cos.unsqueeze(-2).to(x.dtype)
|
|
sin = sin.unsqueeze(-2).to(x.dtype)
|
|
if is_neox_style:
|
|
x1, x2 = torch.chunk(x, 2, dim=-1)
|
|
else:
|
|
x1 = x[..., ::2]
|
|
x2 = x[..., 1::2]
|
|
o1 = x1 * cos - x2 * sin
|
|
o2 = x2 * cos + x1 * sin
|
|
if is_neox_style:
|
|
return torch.cat((o1, o2), dim=-1)
|
|
else:
|
|
return torch.stack((o1, o2), dim=-1).flatten(-2)
|
|
|
|
def forward_cuda(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
offsets: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
apply_rope_with_cos_sin_cache_inplace(
|
|
positions=positions,
|
|
query=query,
|
|
key=key,
|
|
head_size=self.head_size,
|
|
cos_sin_cache=self.cos_sin_cache,
|
|
is_neox=self.is_neox_style,
|
|
)
|
|
return query, key
|
|
|
|
|
|
@triton.testing.perf_report(
|
|
triton.testing.Benchmark(
|
|
x_names=["seq_len"],
|
|
x_vals=[
|
|
2,
|
|
4,
|
|
8,
|
|
16,
|
|
32,
|
|
64,
|
|
128,
|
|
256,
|
|
512,
|
|
1024,
|
|
2048,
|
|
4096,
|
|
8192,
|
|
16384,
|
|
32768,
|
|
65536,
|
|
],
|
|
line_arg="provider",
|
|
line_vals=["flashinfer", "native", "vllm"],
|
|
line_names=["FlashInfer", "Native", "vLLM"],
|
|
styles=[("blue", "-"), ("red", "-"), ("green", "-")],
|
|
ylabel="Latency (ms)",
|
|
plot_name="rope-latency",
|
|
args={
|
|
"head_size": 4096 // 32,
|
|
"rotary_dim": 4096 // 32,
|
|
"max_position_embeddings": 65536,
|
|
"base": 500000,
|
|
"is_neox_style": True,
|
|
"dtype": torch.bfloat16,
|
|
"device": "cuda",
|
|
"batch_size": 2,
|
|
"num_q_heads": 32,
|
|
"num_kv_heads": 8,
|
|
},
|
|
)
|
|
)
|
|
def benchmark(
|
|
provider,
|
|
head_size,
|
|
rotary_dim,
|
|
max_position_embeddings,
|
|
base,
|
|
is_neox_style,
|
|
dtype,
|
|
device,
|
|
batch_size,
|
|
seq_len,
|
|
num_q_heads,
|
|
num_kv_heads,
|
|
):
|
|
print(
|
|
f"provider: {provider}, head_size: {head_size}, rotary_dim: {rotary_dim}, max_position_embeddings: {max_position_embeddings}, base: {base}, is_neox_style: {is_neox_style}, dtype: {dtype}, device: {device}, batch_size: {batch_size}, seq_len: {seq_len}, num_q_heads: {num_q_heads}, num_kv_heads: {num_kv_heads}"
|
|
)
|
|
|
|
rope_forward = None
|
|
|
|
if provider == "vllm":
|
|
rope = vLLMRotaryEmbedding(
|
|
head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype
|
|
).to(device)
|
|
rope_forward = rope.forward_cuda
|
|
elif provider == "flashinfer":
|
|
rope = FlashInferRotaryEmbedding(
|
|
head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype
|
|
).to(device)
|
|
rope_forward = rope.forward_cuda
|
|
elif provider == "native":
|
|
rope = vLLMRotaryEmbedding(
|
|
head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype
|
|
).to(device)
|
|
rope_forward = rope.forward_native
|
|
|
|
pos_ids = torch.arange(seq_len, device=device).repeat(batch_size)
|
|
query = torch.randn(
|
|
batch_size * seq_len, num_q_heads * head_size, dtype=dtype, device=device
|
|
)
|
|
key = torch.randn(
|
|
batch_size * seq_len, num_kv_heads * head_size, dtype=dtype, device=device
|
|
)
|
|
|
|
# Get raw measurements
|
|
measurements = bench_gpu_time(lambda: rope_forward(pos_ids, query, key))
|
|
# Calculate statistics to match original return values
|
|
ms = np.median(measurements)
|
|
min_ms = np.percentile(measurements, 20)
|
|
max_ms = np.percentile(measurements, 80)
|
|
|
|
return ms, min_ms, max_ms
|
|
|
|
|
|
if __name__ == "__main__":
|
|
benchmark.run(print_data=True, show_plots=True, save_path="rope_benchmark.png")
|