sglang_v0.5.2/flashinfer_0.3.1/csrc/activation.cu

129 lines
4.6 KiB
Plaintext

/*
* Copyright (c) 2024 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <flashinfer/activation.cuh>
#include "pytorch_extension_utils.h"
using namespace flashinfer;
__device__ __forceinline__ float silu(const float& val) { return val / (1.0f + __expf(-val)); }
__device__ __forceinline__ float gelu(const float& val) {
constexpr float kAlpha = M_SQRT1_2;
return val * 0.5f * (1.0f + ::erf(val * kAlpha));
}
__device__ __forceinline__ float gelu_tanh(const float& val) {
const float cdf =
0.5f * (1.0f + math::tanh((0.7978845608028654f * (val + 0.044715f * val * val * val))));
return val * cdf;
}
void silu_and_mul(at::Tensor& out, at::Tensor& input, bool enable_pdl) {
int d = input.size(-1) / 2;
int64_t num_tokens = input.numel() / input.size(-1);
const c10::cuda::OptionalCUDAGuard device_guard(out.device());
auto stream = at::cuda::getCurrentCUDAStream();
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] {
uint32_t vec_size = 16 / sizeof(c_type);
cudaLaunchConfig_t config;
config.gridDim = num_tokens;
config.blockDim = std::min(d / vec_size, 1024U);
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
config.numAttrs = 1;
config.attrs = attrs;
auto kernel = flashinfer::activation::act_and_mul_kernel<c_type, silu>;
cudaLaunchKernelEx(&config, kernel, static_cast<c_type*>(out.data_ptr()),
static_cast<c_type*>(input.data_ptr()), d);
cudaError_t err = cudaGetLastError();
TORCH_CHECK(err == cudaSuccess, "Failed to launch kernel: ", cudaGetErrorString(err));
return true;
});
}
void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input, bool enable_pdl) {
int d = input.size(-1) / 2;
int64_t num_tokens = input.numel() / input.size(-1);
const c10::cuda::OptionalCUDAGuard device_guard(out.device());
auto stream = at::cuda::getCurrentCUDAStream();
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] {
uint32_t vec_size = 16 / sizeof(c_type);
cudaLaunchConfig_t config;
config.gridDim = num_tokens;
config.blockDim = std::min(d / vec_size, 1024U);
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
config.numAttrs = 1;
config.attrs = attrs;
auto kernel = flashinfer::activation::act_and_mul_kernel<c_type, gelu_tanh>;
cudaLaunchKernelEx(&config, kernel, static_cast<c_type*>(out.data_ptr()),
static_cast<c_type*>(input.data_ptr()), d);
cudaError_t err = cudaGetLastError();
TORCH_CHECK(err == cudaSuccess, "Failed to launch kernel: ", cudaGetErrorString(err));
return true;
});
}
void gelu_and_mul(at::Tensor& out, at::Tensor& input, bool enable_pdl) {
int d = input.size(-1) / 2;
int64_t num_tokens = input.numel() / input.size(-1);
const c10::cuda::OptionalCUDAGuard device_guard(out.device());
auto stream = at::cuda::getCurrentCUDAStream();
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] {
uint32_t vec_size = 16 / sizeof(c_type);
cudaLaunchConfig_t config;
config.gridDim = num_tokens;
config.blockDim = std::min(d / vec_size, 1024U);
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
config.numAttrs = 1;
config.attrs = attrs;
auto kernel = flashinfer::activation::act_and_mul_kernel<c_type, gelu>;
cudaLaunchKernelEx(&config, kernel, static_cast<c_type*>(out.data_ptr()),
static_cast<c_type*>(input.data_ptr()), d);
cudaError_t err = cudaGetLastError();
TORCH_CHECK(err == cudaSuccess, "Failed to launch kernel: ", cudaGetErrorString(err));
return true;
});
}